DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 13/2005 str. 146     <-- 146 -->        PDF

IZLAGANJE NA ZNANSTVENOM SKUPU - PRESENTATION AT THE INTERNATIONAL SYMPOSIUM Šumarski list SUPLLMENT (2005) 144-1


UDK 630* 907 + 231 + 524


STRUKTURA I PRIRODNA OBNOVA PREDPLANINSKE ŠUME OBIČNE SMREKE
SA ZAŠTITNOM FUNKCIJOM U NISKIM TATRAMA (SLOVAČKA)


THE STRUCTURE AND NATURAL REGENERATION OF A SUBALPINE SPRUCE FOREST
WITH PROTECTIVE FUNCTION IN NIZKE TATRY MOUNTAINS (SLOVAKIA)


Stanislav KUCBEL*


SAŽETAK: U radu se razmatra problem sastojinske strukture, prirodne
obnove i uzgojnih zahvata u zaštitnim šumama u planinskom dijelu Slovačke.
Primarna zaštitna funkcija (posebice zaštita od erozija, od lavina i zaštita voda)
u planinskoj šumi zahtijeva trajnu prisutnost stabilne, prirodno obnovljene
šume s diferenciranom strukturom. Kako bismo mogli opisati i kvantiflcirati
tu strukturu, osnovane su tri trajne pokusne plohe na lokalitetu Prašiva u
Niskim Tatrama. U radu se analiziraju posebna strukturna obilježja istraživane
sastojine te na temelju dobivenih rezultata kvantijiciraju osnovna strukturna
obilježja za šumu na velikim visinama. Rezultati pokazuju da visinska
šuma u idealnom stanju i pod sličnim ekološkim uvjetima treba imati sljedeća
svojstva: gustoću stabla 1000-15000 kom/ha, padajuću distribuciju promjera,
prisutnost triju jasno ocrtanih etaža -gornja 75 %, srednja 15 % i
podstojna 10%, temeljnicu 34-40 m /ha, drvnu zalihu 300-400 m3/ha u skladu
s proizvodnom sposobnosti staništa.


Osim svojstava strukture modela, u radu se analizira status i količina prirodne
obnove, koja je neophodna za stalnu izmjenu generacija u šumi na velikoj
visini. U prirodnoj obnovi prisutne su dvije vrste stabala (obična smreka i
jarebika). Zbog svojih ekoloških karakteristika, jarebika je prevladavajuća
vrsta stabla u prirodnoj obnovi na svim istraženim plohama. Broj prirodno
obnovljene obične smreke u visinskom razredu iznad 20 cm ključanje za izmjenu
generacija i može se već smatrati relativno sigurnim početkom nove
generacije. Rezultati pokazuju da bi broj prirodno obnovljenih stabala u visinskim
razredima iznad 20 cm trebao biti barem 600 kom/ha, pod uvjetom da
postoji dovoljna rezerva u visinskom razredu ispod 20 cm.


Ključne riječi: predplaninska šuma, sastojinska struktura, obična
smreka, prirodna obnova


UVOD - Introduction


Šumske sastojine s prioritetnim funkcijama zaštite kao šume posebne namjene. Visoka nadmorska visina
tla (tj. antierozivnim i antilavinskim) zauzimaju oko šuma ima općenito muitifunkcijski učinak, a spomenu


336.641 ha (16,7 %) od cjelokupne šumske površine te su funkcije obično najvažnije. U podkategonju zašRepublike
Slovačke. Sve ove sastojine pripadaju netitnih
šuma (tj. šume velike nadmorske visine) ubrajakomercijalnim
šumama, bilo u kategoriji zaštite, bilo mo 49.500 ha.
Problem šumskouzgojnih zahvata u planinskim i


*
Ing. Stanislav Kucbel, Katedra za uzgajanje šuma, predplaninskim sastojinama držao se jednim od margiŠumarski
fakultet, Tehničko sveučilište, Zvolen,
nalnih problema u slovačkom šumarstvu. Opadajuća


Masarykova 24, 96053 Zvolen, Slovak Republic,


vitalnost i relativno intenzivno sušenje pojedinih sta


e-mail: kucbel@vsld.tuzvo.sk




ŠUMARSKI LIST 13/2005 str. 147     <-- 147 -->        PDF

S. Kucbel: STRUKTURA I PRIRODNA OBNOVA PREDPEANINSKE ŠUME OBIČNE SMREKE Šumarski list SUPLEMENT (2005), 144-153
bala i čitavih sastojina na nekim lokalitetima tijekom
posljednjih 15-20 godina usmjerili su pozornost na
probleme planinskih šuma. Utjecaj imisija i ekstremne
vremenske situacije uzrokovane globalnim klimatskim
promjenama bili su vjerojatno ključni čimbenici što su
aktivirali proces sušenja. Rezultati istraživanja (Gubka
1998, 1999) te iskustvo praktičnih šumara pokazali
su, da osim spomenutih čimbenika, nestabilna sastojinska
struktura ostaje ključni problem šuma velikih nadmorskih
visina. To je posljedica nepostojećih uzgojnih
regulacija, a to uzrokuje malu otpornost na ometanje i
visoku vjerojatnost katastrofalnih oštećenja.


Rješenje problema šumarskih zahvata u planinskim
šumama traži poznavanje i razmatranje njihovih specifičnosti
prema šumama na niskim položajima. Želimo
li razumjeti dinamiku planinskih šuma, trebamo primijeniti
znanje dobiveno iz dugoročnog istraživanja primarnih
šuma u sedmoj šumsko-vegetacijskoj fazi.
Proučavanjem životnog ciklusa obične smreke primarnih
šuma ustanovljene su neke prirodne tendencije s
negativnim utjecajem na stabilnost tih šuma (Korpel
1989, Schmidt-Vogt 1991, Leibundgut 1993).
To su uglavnom tendencija razvijanja manje stabilnih
jednoslojnih struktura s horizontalnim sklopom tijekom
dugog optimalnog stadija, stagnacija procesa obnove,
te sklonost katastrofalnom uništenju, što uzrokuje
gubitak tražene strukture tijekom dugog razdoblja.
Na temelju tih otkrića većina autora (Leibundgut
1978,Korpel 1980, Mayer-Ott 1991, Schmidt -


Vogt 1993) mišljenja su da obična prirodna smrekina
šuma nema stalnu sposobnost ispunjavanja svih zaštitnih
funkcije, posebice na pogodnim položajima. Planinska
šuma s optimalnom sastojinskom strukturom,
što je rezultat namjernih šumarskih zahvata, stabilnija
je od primarne šume obične smreke, te se tako ciljane
uzgojne regulacije čine potrebnim kao trajna zaštita.


Kao trajna šumska zaštita u planinskim visinama
karakteristični bi trebali biti prisutnost individualnih
stabala, stabilnost pojedinih stabala i čitave sastojine te
postepena prirodna obnova. To omogućuje stabilnu
prirodnu obnovu te višedobnost i višeslojnost šume.
Vremenski neograničena trajnost strukture i trajna obnova
opći su atributi preborne šume. Stoga mnogi autori
(Kuoch 1972, Trepp 1981, Bischoff 1987,
Ott 1988, Frehner 1989, Ott et al 1997) drže takozvanu
planinsku prebornu šumu (Gebirgsplenterwald)
idealnim uzorkom šume obične smreke na položajima
velikih nadmorskih visina.


Prirodno dugoročni proces prirodne obnove je jedna
od specifičnosti planinskih šuma. Trajna prirodna
obnova bez ograničenja zaštitnih utjecaja, što osigurava
promjenu šumskih generacija, ključni je problem u
planinskim šumama. Ott (1988) drži obnovu sastojine
za "slabu kariku u lancu šumske dinamike" u rastu
šume blizu granice stabla. Trepp (1961) smatra da
šumskouzgojnc regulacije ispunjavaju svoju svrhu u
planinskim šumama samo u slučaju da su sposobne
osigurati njihovu prirodnu obnovu.


METODE


Istraživanje je obavljano blizu Korytnice u sjevernoj
slovačkoj. Na lokalitetu Prašiva u zapadnoj dijelu Niskih
Tatra, tri trajne pokusne plohe postavljene su u
sastojini sa zaštitnom funkcijom. Plohe su postavljene u
dijelovima gdje je sastojinska sruktura najdiferenciranija,
tako daje idealna struktura planinske šume aproksimatizirana.
Svaka ploha bila je 30 x 30 m, te je uključivala
transekciju širine 10 m. Na pokusnim plohama dobivene
su određene sastojinske karakteristike i stanje
prirodne obnove na transekciji, pa je na temelju njih
prosječno kvantificiran model sastojinske strukture.


Pokusne plohe postavljene su na zapadnoj padini na
prosječnoj visini 1.300 m iznad mora. Nagib je između
50 % i 70 %, a pokriven je s čistom sastojinom obične
smreke (Picea abies /U Karst.), s rijetkom prisutnošću
običnog gorskog jasena (Sorbus aucuparia L.) i planinskog
bora (Pinus mugo Turra). Prema šumskoj tipologiji,
tri šumske zajednice mogu se ovdje naći: Sorbeto-Piceetum
(60 %), Fagetum abietino-piceosum (30 %), te
Mughetum acidofilum (10 %). Za ovaj odjel šumskogospodarstveni
plan zaključuje prosječnu dob od 180 godina
i prosječni sklop krošanja od 0.7.


- Methods
Na trajnim plohama izmjeren je niz od pojedinih
sljedećih parametara: vrsta drveća, DBH (preko 1 cm),
drvni razred (prema gornjoj visini - gornji, srednji i donji
sloj), defolijacija (vizualna procjena opadanja asimilacijskih
organa je 10 %). Uz te podatke izmjerene su
sljedeće varijable na transekciji: visina, visina na mjestu
gdje počinje razvoj krošnje, radijus krošnje (u 4 smjera)
te položaj debla na transekciji (koordinate x i y).


Na svakoj je plohi zabilježen otpadni drvni materijal
te njegova duljina, promjer u sredini duljine, i stupanj
raspadanja (1 - nedavno srušeno, zdravo, 2 - djelomice
trulo, vrstu drva moguće odrediti, 3 - uznapredovalo
raspadanje, vrsta se ne može odrediti) za svaki
izmjereni trupac.


Analize prirodne obnove obavljene su na transekciji.
Zabilježena su sva individualna stabla prema vrsti i
visinskom razredu (do 20 cm, 21-50 cm, 51-80 cm,
81-130 cm, 131 cm do DBH lem).




ŠUMARSKI LIST 13/2005 str. 148     <-- 148 -->        PDF

S. Kucbel: STRUKTURA I PRIRODNA OBNOVA PREDPLANINSKR ŠUME OBIČNI: SMREKE Šumarski list - SUPLEMENT (2005), 144-153
REZULTATI - Results


Sastojinska struktura Stand structure


Vrijednosti temeljnih dendrometrijskih osobina na
određenim pokusnim plohama sumirane su u Tablici 1.
Na temelju dobivenih debljinskih frekvencija te s obzirom
na ostale sastojinske karakteristike, moguće je
držati broj debala od 1000-1500 ha"´ dovoljnim (svi
živi primjerci s preko 7cm DBH). Broj stabla s manje
od 500 ha"1 mogu biti jedan od pokazatelja nestabilne
homogene strukture ili prisutnosti većih površina bez
kontinuirane šumske sastojine.


300


S


c


1


Krivulje debljinske raspodjele jedna su od temeljnih
karakteristika sastojinske strukture (SI. 1). Na svakoj
promatranoj pokusnoj plohi krivulje distribucije su
manje ili više silaznog oblika, stoje tipično za diferenciranu
strukturu (vrlo slično strukturi preborne šume). Neke
vidljive razlike između određenih ploha proizlaze iz
prikazanih brojki. Iako je distribucija na Plohi 1 silaznog
oblika, na njoj se nalazi prilično velik broj stabala
višeg debljinskog razreda (stabla gornjeg sloja). Regulacija
strukture trebala bi biti usmjerena na smanjenje


12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
Debljinski razred (cm) - diameter class (cm)
Slika 1. Distribucijske krivulje na pojedinim pokusnim plohama


Figure 1 Distribution curves on particular research plots


Tablica 1. Osnovne karakteristike sastojine na pojedinim plohama


Table l Basic stand characteristics on particular PRPs
parametar -parameter
vitalna -vital


broj -number sušenje -dead standing


ukupno -total
broj >7cm -number >7 cm
temeljnica -basal area
drvna zaliha -growing stock
sklop krošanja -crown canopy
prosječna defolijacija -average defoliation
gornj i -upper


srednji -middle
slojevi -layers
donji -lower


ukupno -total


PRPI PRP2 PRP3
ha-1 789 1444 1822
% 88,75 94,20 79,23
ha"1 100 89 478
% 11,25 5,80 20,77
ha1 889 1533 2300
% 100,00 100,00 100,00
ha"1 411 978 1044
nr.ha"1 40,78 41,81 34,17
m .ha"1 444,22 387,17 268,43
% 55 76 76
% 10,35 7,08 9,57
ha"1 133 167 211
% 16.90 11,54 11,59
ha"1 56 178 267
% 7,04 12.31 14,63
ha"1 600 1100 1344
% 76,06 76,15 73,78
ha1 789 1444 1822
% 100,00 100,00 100,00




ŠUMARSKI LIST 13/2005 str. 149     <-- 149 -->        PDF

S. Kuchel: STRUKTURA I PRIRODNA OBNOVA PREDPLANINSKE ŠUME OBIČNU SMREKE ... Šumarski list - SUPLEMENT (2005). 144-153
pojedinih primjeraka gornjeg sloja u korist drveća iz temelju tih osobina sastojine mogu vrednovati kao vitalsrednjeg
i nižeg sloja. Debljinska distribucija na Plohi 2 ne i zdrave.
najviše aproksimira traženi model. Pojedina stabla iz Analiza frekvencije drveća prema slojevima pokazudonjeg
sloja (debljinski razredi 2-4) su srednje defici-je da otprilike 3/4 svih pojedinih primjeraka koncentrijentni.
Ploha 3 pokrivena je s najmlađim sastojinama. rano u donjem sloju, dok je ostalih 25 % podijeljeno u
Jedan dio te plohe je u fazi rasta guštika i šibljaka. Ovaj različitim omjerima u srednji i gornji sloj. Nakon vredhomogeni
dio predstavlja nestabilni element koji traži novanja sastojinske strukture na pojedinim plohama,
šumskouzgojne mjere. Zahvati bi trebali smanjiti broj najprikladniji odnos slojeva čini se model 75 % donjeg
stabala i diferencirati sastojinu. sloja, 15 % srednjeg sloja i 10 % gornjeg sloja. Taj se


Prema dobivenim podacima bazalno područje trebamodel
odnosi na omjer prema broju stabala, u slučaju
lo bi se kretati između 35 nr.ha"1 i 40 nV.ha"´ u danoj omjera površine, svaki sloj bi trebao imati otprilike istu
površinu (tj. 1/3 sastojinske površine).


strukturi. Drvna zaliha ima sasvim drukčije vrijednosti
na određenim pokusnim plohama (od 268,43 m´.ha"´ do Grub drvni otpad (GDO) važna je komponenta pla444,22
m´.ha"1). S obzirom na sastojinsku strukturu kao ninske šume, posebice sa stajališta njenih procesa obi
na utjecaj izvanrednih primjeraka (npr. jedno stablo s nove. Tablica 2 sumira rezultate volumena sastojine
DBH od 88 cm na Plohi 1 povećava ukupnu drvnu zalipodijeljeno
prema vitalnim, dubećim ili ležećim mrhu
za više od 80 m3.ha_1) moguće je predložiti optimalnu tvim stablima. Volumen ležećeg mrtvog drva kreće se
drvnu zalihu na razini od 300 m\ha"´ do 400 m3.ha"1, u od 43,56 m3.ha ´ na Plohi 2 do 71,67 m3.ha_l na Plohi 1
skladu s proizvodnim uvjetima položaja. Stupanj opadau
apsolutnim vrijednostima.
nja lišća kreće se ispod 10 % na svim plohama, pa se na


Tablica 2. Drvna zaliha i volumen grubog drvnog otpada prema pojedinim plohama


Table 2 Growing stock and volume of coarse woody debris according to PRP


PRP
vitalna
vital
sušenje dead
pozicija
standing lying
ukupno
total
broj number ha"1 789 100 156 1045
PRPI
volumen volume
m .ha"1
%
444,22
80,57
35,44
6,43
71,68
13,00
551,34
100,00
broj number
ha1 1444 89 78 1611
PRP2 volumen volume
m´.ha"´
%
387,17
84,84
25,6
5,61
43,6
9,55
456,37
100,00
broj number
ha1 1822 478 289 2589
PRP 3 volumen volume
m .ha"´
%
268,43
66,21
88,28
21,77
48,74
12,02
405,45
100,00


Osim ukupne količine GDO, omjer određenih stadivoljnu
količinu GDO, ali se može reći da što su gori
ja raspadanja važan je ponajprije volumen GDO u druuvjeti
za prirodnu obnovu u sastojini, to više mora biti
gom i trećem stadiju raspadanja, zato što samo trupci u količine GDO. Raspodjela čitave biomase na promatom
stanju osiguravaju odgovarajuće uvjete za razvoj tranim plohama jc sljedeća: otprilike 80-85 % otpada
prirodne obnove. S tog su gledišta najbolji uvjeti na na vitalna stabla, ostatak se dijeli u omjeru 1:2 između
Plohi 1, gdje je gotovo sav GDO barem dejlomično is-dubećeg i ležećeg mrtvog drva. Drukčija je situacija
trunuo te stvara pogodnu sjemenu podlogu za smrekine samo na Plohi 3, gdje je primijećen vrlo velik broj dusadnice.
Iz danih podataka teško je kvantificirati do-bećeg mrtvog drva.


PROCESI OBNOVE - Regeneration processes


Na svim pokusnim plohama nalaze se tri vrste važna i stalna komponenta sastava vrsta u planinskoj
drveća u prirodnoj obnovi - obična smreka (Picea abies šumi, smreka ostaje determinantna vrsta ovih sastojina i
l\.l karst.) i gorski jasen (Sorbus aucuparia L.). Iako stoga broj i struktura obnove smreke ima ključno značetablice
3 i 4 također prikazuju ukupni broj posebnih nje za obnovu sastojine. Drugi razlog, koji ne dozvoljaprimjeraka
(smreka + jasen), ove vrijednosti kao i komva
izravnu usporedbu, je ritam rasta i ekološki zahtjevi
paracija brojeva prema vrstama drveća imaju samo ori-ovih triju vrsta, kao i različita dinamika procesa obnove.
jentacijsko značenje. Prvi razlog je taj, da iako je jasen




ŠUMARSKI LIST 13/2005 str. 150     <-- 150 -->        PDF

S. Kucbel: STRUKTURA I PRIRODNA OBNOVA PRKDPLANINSKE SUME OBIČNE SMREKE Šumarski list - SUPLEMENT (2005), 144-153
Tablica 3. Broj prirodnih obnova prema visinskim kategorijama (izračunato po hektaru)


Table 3 Number of natural regeneration according to height categories (calculated per hectare)


Ploha


PRP


Ploha 1
PRP 1


Ploha 2
PRP 2


Ploha 3
PRP 3


Vrsta


tree species
smreka -spruce
gorski jasen -rowan
ukupno -total


0/
/o


smreka -spruce
gorski jasen -rowan
ukupno -total
%
smreka -spruce
gorski jasen -rowan
ukupno -total
%


<20cm 21-50 cm
1333 100
1067 1467
2400 1567
36,73 23,98
934 67
733 2867
1667 2934
25,91 45,61
1001 567
368 4600
1369 5167
16,36 61,74


Za vrednovanje procesa obnove u sastojinama posebno
je zanimljiva visinska kategorija preko 20 cm.
Dok su sadnice ispod 20 cm visine tek vrlo nesiguran
početak nove generacije, a njihov broj po hektaru su
više dokaz trajnog razmnožavanja u sastojinama, pojedini
primjerci preko 20 cm (ili 50 cm) relativno su sigurni
i sposobni za sudjelovanje u sljedećoj sastojinskoj
generaciji. Usporedba smreke s jasenom u Tablici
4 pokazuje prevagu jasena u visinskoj kategoriji preko
20 cm. Gorski jasen (jarebikina mukinja) predstavlja
najmanje 2/3 obnove, a na Plohi 1 i 2 čak više od 80 %,


Tablica 4. Omjer vrsta drveća u prirodnoj obnovi


Table 4 Ratio or tree species in natural regeneration


Ploha


PRP


Ploha 1


PRP 1


Ploha 2


PRP 2


Ploha 3


PRP 3


visina-height


Vrsta


ispod -under 20 cm


tree species


ha1 %
smreka -spruce 1333 55,54
jarebika -rowan 1067 44,46


ukupno -total 2400 100,00
smreka -spruce 934 56,03
jarebika -rowan 733 43,97
ukupno -total 1667 100,00
smreka -spruce 1001 73,12
jarebika -rowan 368 26,88
ukupno -total 1369 100,00


Pitanje dovoljne količine prirodne obnove smreke za
planinske sastojine moguće je objasniti uz primjenu kalkulacije
koju je izradio Ott etal. 1977. Autor spominje,
da područje prirodne obnove u planinskoj šumi traba
najmanje od 1/6 do 1/3 sastojinske površine. Uzmemo li
prosjek od 1/4 i uobičajeni broj zasađenih smreka


(2.500 ha"1), prosječan broj mora biti 600 stabala po
hektaru. U slučaju daje stvarni broj smreke od preko 20
cm (ili 50 cm) iznad ove granice, a postoji dovoljna rezerva
u visinskom razredu ispod 20 cm, dinamika procesa
obnove može se držati zadovoljavajućom.
visina -height
51-80 cm 81-130 cm 130cm +
ukupno
total %
67 167 267 1934 100,00
2067 0 0 4601 100,00
2134 167 267 6535 100,00
32,65 2,56 4,09 100,00 -
133 100 533 1767 100,00
733 333 0 4666 100,00
866 433 533 6433 100,00
13,46 6,73 8,29 100,00 -
433 300 867 3168 100,00
233 0 0 5201 100,00
666 300 867 8369 100,00
7,96 3,58 10,36 100,00 -


stoje posljedica njenog bržeg rasta u ranijoj dobi. U visinskoj
kategoriji ispod 20 cm, broj smreka i jasena je
otprilike jednak, s izuzetkom Plohe 3. Analiza visinskih
razreda pokazuje relativno visoku smrtnost pojedinih
primjeraka jasena, posebice u višim kategorijama, gdje
samo minimalan broj dosegne visinu od preko 80 cm.
Naprotiv, smreka ima prilično uravnotežen omjer u kategorijama
preko 20 cm, što može značiti da ukoliko
sadnica smreke dosegne visinu od 20 cm, možemo ju
smatrati relativno sigurnom.


više -over 20 cm


ha1 %
601 14,53
3534 85,47
4135 100,00
833 17,48
3933 82,52
4766 100,00
2167 30,96
4833 69,04
7000 100,00


ukupno — loiui


ha1 %
1934 29,59
4601 70,41
6535 100,00
1767 27,47
4666 72,53
6433 100,00
3168 37,85
5201 62,15
8369 100,00


Usporedba stvarnih brojeva s graničnom vrijednošću
pokazuje dovoljan broj obnova smreke u razredima
preko 20 cm na Plohama 2 i 3. Količina obnove na Plohi
1 doseže upravo limit od 600 ha"´. Količina smreka
od preko 20 cm može se smatrati dovoljnom. Dugoročno
gledano, broj smreka ispod 20 cm je problematičan
(on je ispod 1.500 ha"´ na svakoj plohi). Pretpostavimo
li visoku smrtnost sadnica, broj se ne čini dovoljnom
rezervom, a trajna obnova sastojina mogla bi
biti ugrožena u budućnosti.




ŠUMARSKI LIST 13/2005 str. 151     <-- 151 -->        PDF

S. Kucbcl: STRUKTURA I PRIRODNA OBNOVA PREDPLANINSKE SUME OBIČNE SMREKE ... Šumarski liši -SUPLEMENT (2005). 144-153
DISKUSIJA I ZAKLJUČCI -
--Discussion and conclusions


U ovom radu korišteni su podaci s pokusnih ploha.
Analiza strukture koja aproksimira idealnu sastojinsku
strukturu u planinskim šumama omogućila je donošenje
nekih djelomičnih zaključaka u odnosu na model
planinske šumske strukture.


Rezultati se mogu usporediti s podacima iz Švicarskih
Alpa koje je objavio Trepp (1961). Prema ovom
autoru, najvažni atributi grupne preborne strukture planinske
šume su sljedeći: nakupinasta ili grupna struktura,
obnova na maloj površini, srednja drvna zaliha
(340-380 m3 ha"1) i na prikladnim terenima, trajni razvoj
pirrodne obnove na ekološki diferenciranim mikropoložajima.
Na ovoj pokusnoj plohi broj stabala je bio
720/ha, a njegova distribucija po slojevima bila je kako
slijedi: donji sloj 58,3 %, srednji 13,8 %, te gornji sloj
27,7 %. Autor vrednuje drvnu zalihu na plohi kao
suviše veliku, te preporučuje maksimalnu zalihu od


LITERATURA


Bischoff, N., 1987: Pflege des Gebirgswaldes, Bundesamt
fur Forstwesen and Landschafts schütz,
EDMZ Bern, 379 s.


Frehner, M., 1989: Beobachtungen zur Einleitung
der Naturverjungung an einem nordexponierten
Steilhang im subalpinen Fichtenwald, Schweiz.
Z.Forstwesen, 140 (11), s. 1013-1022.


G ubk a, K., 1998: Struktura porastov pod homou hranicou
lesa na lokalite Jasienok, Acta Facultatis
Forestalis XL., Zvolen, s. 29-39.


G übk a, K., 1999: Struktura smrekovćho porastu pod
hornou hranicou lesa v dielci 105 na LS Maluzinä,
Acta Facultatis Forestalis XLI, Zvolen, s.
107-119.


KorpeL, S., 1980: Vyvoj a struktura prirodnych
smrekovych lesov Slovenska vo vzt´ahu k protilavinovej
ochrannej funkcii, Acta facultatis forestalis
XXII, Zvolen, s. 9-39.


KorpeL, Š., 1989: Pralesy Slovenska, Veda, Bratislava,
332 s.


Kuoch, R., 1972: Zur Struktur and Behandlung von
subalpinen Fichtenwäldern, Schweiz. Z. Forstwesen,
123(2), s.77-89.


350 m3 ha"´, čak na najprikladnijim položajima. Sto se
tiče prirodne obnove, izračunao je 2.160 stabala po hektaru
u visinskom razredu od ispod 30 cm; u visinskom
razredu 31-150 cm -1.220 ha"´, a u razredu od preko
150 cm bilo je 620 ha"1. Usporedbom s tim rezultatima,
posebice se brojke u kategoriji ispod 20 cm na našim
pokusnim plohama čine malima, te, kao što je rečeno
prije, one nisu dovoljna rezerva za trajnu obnovu.


Osim održavanja diferencirane strukture šumskouzgojni
zahvati trebaju se usmjeriti na podršku postojećoj
prirodnoj obnovi, tako da se stvore prikladni svjetlosni
i termalni uvjeti za njihov daljnji rast i razvoj. Najbolji
način da se to postigne je posjeći nekoliko stabala
zasjene iz gornjeg sloja. Sto se tiče povećanja broja
sadnica u kategoriji ispod 20 cm, bilo bi dobro ostaviti
neke od posječenih stabala u sastojim, kako bi se stvorile
sjemene podloge za pojavu sadnica.


-References
Leibundgut , H., 1978: Über die Dynamik europäischer
Urwälder, Allg. Forstz. 33, s. 686-690.
Leibundgut , FL, 1993: Europäische Urwälder, Verlag
Paul Haupt, Bern-Stuttgart, 260 s.
Mayer, FL, E. Ott, 1991: Gebirgswaldbau -Schutzwaldpflege,
Gustav Fischer Verlag, Stuttgart,
587 s.
Ott, E., 1988: Die Gebirgswaldpflege -eine Vielfalt
sehr variationsreicher Optimierungsaufgaben,
Schweiz. Z. Forstwesen, 139 (1), s. 23-26.
Ott, E., M. Frehner, H. Frey, P. Lüscher, 1997: Gebirgsnadelwälder,
Verlag Paul Haupt, Bern, 287 s.
Schmidt-Vogt,H., 1991: Die Fichte, Bd.II/3, Paul
Parey Verlag, Hamburg Berlin, 781 s.
Trepp, W., 1961: Die Plenterform des Heidelbeer-
Fichtenwaldes der Alpen, Schweiz. Z. Forstwesen,
112(10), s. 337-350.
Trepp,
W., 1981: Das Besondere des Plenterns im
Gebirgswald, Schweiz. Z. Forstwesen, 132 (10),


s. 823-846.


ŠUMARSKI LIST 13/2005 str. 152     <-- 152 -->        PDF

PRESENTATION AT THE INTERNATIONAL SYMPOSIUM šumarski list - SUPLEMENT (2005), 144-153


THE STRUCTURE AND NATURAL REGENERATION OF A SUBALPINE
SPRUCE FOREST WITH PROTECTIVE FUNCTION
IN NIZKE TATRY MOUNTAINS (SLOVAKIA)


Stanislav KUCBEL


SUMMARY: The paper deals with issue of the stand structure, natural regeneration
and silvicultural interventions in the protective forests in a mountain
region of Slovakia. The priority protective function (especially anti-erosive, anti-
avalanche and water-protective) of the mountain forests requires permanent
presence of a stable, natural regenerating forest with a differentiated structure.
To be able to describe and quantify this structure three permanent research
plots have been established in locality Prasiva in Nizke Tatty Mountains. The
paper analyses particular structure characteristics of researched stand and on
the basis of acquired results the basic structure characteristics for a high-elevation
forest are quantified. The results has shown the high-elevation forest
should have in an ideal state under similar ecological conditions roughly these
characteristics: stem density 1000-1500 pes./ha, falling diameter distribution,
the representation of particular tree layers - upper 75 %, middle 15 %, lower
10%, basal area 35-40 m2/ha, growing stock 300-400 m3/ha according to the
production ability of the site.


Besides the characteristics of model structure the paper analyses the state
and the quantity of natural regeneration, which is necessarily needed for the
steady exchange of generations in a high-elevation forest. In the natural regeneration
two tree species (Norway spruce and rowan) are present. Because of
its ecological characteristics rowan is the prevailing tree species in the natural
regeneration on all researched plots. The number of Norway spruce natural regeneration
in the height classes above 20 cm is crucial for the generation exchange
and can already be considered as a relatively secure beginning of a new
generation. The results have shown the number of natural regeneration individuals
in the height classes above 20 cm should be at least 600 pes./ha, under
the condition of sufficient reserve in the height class under 20 cm.


Keywords: subalpine forest, stand structure, Norway spruce, natural
regeneration


INTRODUCTION


Forest stands with priority soil-protective (i.e. anti-vation forests have generally a multi-function effect
erosive and anti-avalanche) and water-protective funcand
the mentioned functions are usually the most imtions
take roughly 336,641 ha (16.7 %) within the total portant ones. To the subcategory b. of protection foforest
area of Slovak Republic. All of these stands berests
(i.e. high-elevation forests) we count about
long to the non-commercial forests, either to the cate49,500
ha.
gory of protection or special purpose forests. High-ele-The issue of the silvicultural interventions in the


high-montane and subalpine stands has
been considered one of the marginal problems for


Ing. Stanislav Kucbcl, Department of Silviculture,


the forestry in Slovakia in the past. Decreasing vitality


Forestry Faculty,


Technical University, Masarykova 24, 96053 Zvolen, and relatively intensive breakdown of single trees as
Slovak Republic, e-mail: kucbel@vsld.tuzvo.sk well as whole stands on some localities during the last




ŠUMARSKI LIST 13/2005 str. 153     <-- 153 -->        PDF

S. Kucbel: THE STRUCTURE AND NATURAL REGENERATION OF A SUBALPINE SPRUCE KOREST ... Šumarski list- SUPLEMENT (2005). 144-153
15-20 years have focused the attention on the problems
of high-elevation forests recently. The immission
impact and extreme weather situations caused by
global climatic changes have been probably the crucial
factors which have activated the process of the breakdown.
The research results (Gubka 1998, 1999) as
well as the experiences of practical foresters have
shown, beside the mentioned factors, the unstable
stand structure remains the key problem of high-elevation
forests. This is the result of absent silvicultural regulation
and it causes the low resistance to the disturbances
and high probability of calamity breakdown.


Solution of the problems of silvicultural interventions
in high-elevation forests requires to know and to
consider their specifics to the forests in lower altitudes.
If we want to understand the natural dynamics of high-
elevation forest we can use the knowledge obtained
from the long-term research of primeval forests in the
7th forest vegetation stage. Studying the life cycle of
the Norway spruce primeval forests some natural tendencies
with negative impact on the stability of high-
elevation forest have been found out (Korpel ´ 1989,
Schmidt-Vogt 1991, Leibundgut 1993). These
are mainly the tendency to develop a less stable mono-
layered structure with horizontal canopy during the
long-time optimum stage, the stagnation of regeneration
processes and the proneness to the calamity breakdown
which causes the loss of required structure for a
relatively long period. On the basis of these findings
the most authors (Leibundgut 1978, Korpel´
1980, Mayer-Ott 1991, Schmidt-Vogt 1993)
tend to think a Norway spruce natural forest doesn´t


have, especially on the convenient sites, the permanent
ability to fulfil all protective functions. A high-elevation
forest with optimal stand structure which is the result
of intentional silvicultural interventions is more
stable than a Norway spruce primeval forest and thus
the pointed silvicultural regulations seem to be necessary
for the permanent protective effect.


For the forest with permanent protective effect in
the high altitudes the permanent presence of the tree individuals
on the site, stability of single trees as well as
of the whole stand and gradual natural regeneration
should be characteristic. This needs satisfies a stable,
natural regenerating, uneven-aged and multi-layered
forest at most. Time unlimited durability of structure
and permanent regeneration are in general the attributes
of a selection forest. Therefor most authors
(Kuoch 1972, Trepp 1981, Bischoff 1987, Ott
1988, Frehner 1989, Ott et al. 1997) consider so-
called mountain selection forest ("Gcbirgsplenterwald")
the ideal pattern of a Norway spruce forest in
the high-altitude sites.


Naturally long-time process of natural renewal is
one of the specifics of the high-elevation forest. The
permanent natural regeneration without the limitation
of protective effects, which secures the change of forest
generations, is the crucial problem in the high-altitude
forest. Ott (1988) consider the stand renewal "the
weak link in the chain of forest dynamics" in the forest
growing near the tree limit. According to Trepp
(1961) the silvicultural regulations fulfil their purpose
in the high-elevation forests only in the case they are
able to secure their natural renewal.


METHODS


The research was conducted near Korytnica in northern
Slovakia. On the locality Prasivä in west part of
Nizke Tatry Mountains three permanent research plots
(PRP) in a stand with protective function were established.
The plots were placed in the parts where the stand
structure was most differentiated so that it was approximating
an ideal structure of the mountain forest. Every
plot had a dimension 30 x 30 m and included a transect
with the width of 10 m. On the research plots particular
stand characteristics as well as the state of natural
regeneration on the transect were acquired and on the
basis of them the model stand structure was approximately
quantified.


The research plots were situated on a west slope in
the average altitude 1,300 m a.s.l., the slope ranged
from 50 to 70 %. The slope is covered with pure Norway
spruce (Picea abies (L.) Karst.) stand with rare
presence of rowan (Sorbus aucuparia L.) and mountain
pine (Pinus mugo Turra). According to the forest typology
three forest communities could be found


Sorbeto-Piceetum (60 %), Fagetum abietino-piceosum
(30 %) and Mughetum acidofilum (10 %). For this
compartment the forest management plan states the
average age 180 years and average crown canopy 0.7.


On the PRP the set of following parameters was
measured for every individual: tree species, dbh (over
1 cm), tree class (according to the top height - upper,
middle and lower layer), defoliation (visual estimation
of the loss of assimilation organs in 10 %). In addition
to this data next variables were measured on the transect:
height, height where the crown development begins,
crown radius (in four directions) and the position
of the stem on the transect (x, y - coordinates).


On every PRP coarse woody debris was registered
as well and the length, diameter in the middle of length
and the decomposition grade (1 - recently fallen,
sound, 2 - partly rotted, tree species can be determined,
3 - advanced decay, tree species cannot be determined)
of each log was measured.




ŠUMARSKI LIST 13/2005 str. 154     <-- 154 -->        PDF

S. Kucbel: TI Ili STRUCTURE AND NATURAL REGENERATION OF A SUBALP1NF. SPRUCE FOREST ... Šumarski list- SUPLEMFNT (2005). 144-153
The analyses of natural regeneration was conducted cies and height classes (up to 20 cm, 21-50 cm, 51-80
on the transect. All individuals according to tree spe- cm, 81-130 cm, from 131 cm to dbh 1 cm) were noted.


RESULTS


Stand structure


The values of basic dendrometric traits on particular
research plots are summarized in Table 1. On the
basis of the obtained diameter frequencies and regarding
other stand characteristics it is possible to consider
the stem number of 1,000-1,500 ha"1 as sufficient
(all living individuals with dbh over 1 cm). If only the
large timber is taken into consideration (individuals
with dbh over 7 cm), the stem number should range
from 500 to 1,000 ha"´. The stem numbers with less
than 500 ha"1 can be one of the indicators of an unstable
homogenous structure or of the presence of wider parts
without continuous forest stand.


Diameter distribution curves are one of the basic
characteristics of a stand structure (Fig. 1). On every
observed research plot the distribution curve has more
or less distinctly decreasing shape, which is typical for
a differentiated structure (very close to a selection forest
structure). Some visible differences between particular
research plots follow from the figures. Although
the distribution on the PRP 1 has a decreasing shape,
there is a quite high stem number in higher diameter
classes (trees of the upper layer). The regulation of the
structure should head to the reduction of the upper layer
individuals in favour of the trees from middle and
lower layer. The diameter distribution on the PRP 2 is
approximating the required model at most. The individuals
from the lower layer (diameter classes 2 and 4
cm) arc moderately deficient. The PRP 3 is covered
with the youngest stand. A part of the plot is in the
growth phase of thicket and small pole-stage stand.
This homogenous part represents an unstable element
which requires a silvicultural measure. The intervention
should reduce the stem number and differentiate
the stand.


According to obtained data the basal area should
range from 35 to 40 m2 ha 1 by the given structure. The
growing stock has quite different values on particular
research plots (from 268.43 m3 ha 1 to 444.22 m ha 1).
Considering the stand structure as well as


the influence of outliers (e.g. one stem with dbh of
88 cm on PRP 1 increases the total growing stock for


more than 80 m3 ha"1) it is possible to propose the optimum
growing stock on the level from 300 to 400 m3
ha"´, according to the production conditions of the site.
The defoliation grade ranges under 10 % on all plots
and on the basis of this characteristic the stands can be
evaluated as vital and healthy.


The analysis of tree frequencies according to the
layers shows that approximately 3/4 of all individuals
are concentrated in the lower layer, whilst other 25 %
are divided by different ratio into middle and upper
layer. After the evaluation of stand structure on particular
plots the most appropriate ratio of the layers seems
to be the model: 75 % lower layer, 15 % middle layer
and 10 % upper layer. The model concerns the ratio according
to the stem number, in the case of area ratio
each layer should take roughly the same area (i.e. 1/3
of the stand area).


Coarse woody debris (CWD) is an important component
of a high-elevation forest especially from the
viewpoint of its regeneration processes. Table 2 sums
up the results of the stand volume divided according to
vital, standing and lying dead trees. The volume of lying
deadwood ranges from 43.56 m3 ha"´ on PRP 2 to


71.67 m3 ha"1 on PRP 1 in absolute values.
Besides the total amount of CWD the ratio between
particular grades of decomposition is important, above
all the volume of CWD in the 2nd and 3rd grade of decomposition,
because only the logs in this state provide
appropriate conditions for the development of natural
regeneration. From this point of view the best conditions
are on the PRP 1 where almost all CWD is at least
partly rotted and creates a convenient seedbed for spruce
seedlings. From given data it is difficult to quantify
the sufficient amount of CWD but it is possible to say
the worse are the conditions for the natural regeneration
in the stand, the higher should be the amount of
CWD. The distribution of the whole biomass on the
observed plots is following: approximately 80-85 %
fall on vital trees, the rest is divided in ratio 1:2 between
standing and lying deadwood. Different situation
is only on PRP 3, where a quite high number of standing
deadwood has been observed.


REGENERATION PROCESSES


Two tree species are present in the natural regeneration
on all research plots - Norway spruce {Picea abies


IL.I Karst.) and rowan (Sorbus aucuparia L.). Although
the tables 3 and 4 show also the total number of
individuals (spruce + rowan), this values as well as the
comparison of the numbers according to the tree species
have only an orientation meaning. The first reason
is, that although rowan is an important and permanent




ŠUMARSKI LIST 13/2005 str. 155     <-- 155 -->        PDF

S. Kucbel: THE STRUCTURE AND NATURAL REGENERATION OF A SUBALPINE SPRUCE FOREST ... Šumarski list - SUPLEMENT (2005), 144-153
component of the species composition in the high-elevation
forest, spruce stays the determinant tree species
of these stands and therefore the number and structure
of spruce regeneration has the crucial importance for
the stand renewal. The second reason which does not
allow the direct comparison is the growth rhythm and
ecological demands of these tree species as well as the
different dynamics of the regeneration process.


For the evaluation of the regeneration processes in
the stands especially the height category over 20 cm is
interesting. While the seedlings under 20 cm are only a
very insecure beginning of the next generation and
their numbers per hectare are more the proof of the permanent
breeding in the stands, the individuals over 20
cm (or 50 cm) are relatively secure and able to take part
on the next stand generation. The comparison of the
spruce and rowan representation in table 4 shows the
prevalence of rowan in the height category over 20 cm.
Rowan presents at least 2/3 of the regeneration, on
PRP 1 and 2 even more than 80 % what is the consequence
of her faster growth at the lower age. In the
height category under 20 cm the numbers of spruce and
rowan are approximately equal, excepting PRP 3. The
analysis of the height classes shows relatively high
mortality of rowan individuals especially in higher categories,
where only a minimal number of them reaches
the height over 80 cm. On the contrary, spruce has
a quite balanced ratio in the categories over 20 cm


DISCUSSION AND


In this paper the data acquired from three research
plots were used. The analysis of a structure which is
approximating an ideal stand structure for the high-
elevation forest allowed stating some partial conclusions
regarding the model of the high-elevation forest
structure.


The results can be confronted with the data from
Swiss Alps published by Trepp (1961). According to
this author the most important attributes of the group
selection forest structure on high-elevation sites are
following: cluster or group structure, small-scale regeneration,
middle growing stock (340-380 m3 ha"1) also
on convenient sites, continuous development of the natural
regeneration on ecologically differentiated micro-
sites. On this research plot the tree number was 720 ha,
its distribution into layers: lower 58.3 %, middle 13.8
% and upper layer 27.7 %. The author evaluates the
growing stock on to plot too high and recommends the
maximum growing stock about 350m3 ha"1 even for


what let assume if the spruce seedling has reached the
height of 20 cm we can consider it relatively secure.


The question of sufficient amount of spruce natural
regeneration for high-elevation stand renewal can be
answered according to a calculation of Ott et al.
(1997). The author mentions the area of natural regeneration
in a high-elevation forest should take at least
from 1/6 to 1/3 of the stand area. If we use an average of
1/4 and the usual number of planted spruce (2,500 ha"1),
the approximate reference number should be 600 individuals
per hectare. In the case the real number of spruce
over 20 cm (or 50 cm) is above this limit and there is
a sufficient reserve in the height class under 20 cm, the
dynamics of regeneration process can be considered satisfying.


The comparison of the real numbers with the boundary
value shows a sufficient number of the spruce regeneration
in the classes over 20 cm on PRP 2 and 3.
The amount of the regeneration on the PRP 1 reaches
just the limit 600 ha"1. Generally the amount of spruce
individuals over 20 cm can be considered sufficient.
From the long-term view the number of spruce individuals
under 20 cm is problematic (it lies under 1,500
ha-1 on each PRP). Assuming the high seedling mortality
the number seems to be no sufficient reserve and
the continuous regeneration of the stand could be endangered
in the future.


CONCLUSIONS


most convenient sites. In terms of natural regeneration
he found out 2,160 individuals per hectare in the height
class under 30 cm, in the height class 31-150 cm 1,220
ha"´ and in the class over 150 cm 620 ha"1. Compared
with these results, especially the numbers in the category
under 20 cm from our research plots seem to be
low and as mentioned before they are not a sufficient
reserve for continuous renewal.


Besides the maintenance of the differentiated structure
the silvicultural interventions should be concentrated
on the support of the existing natural regeneration
by means of creating appropriate light and thermal
conditions for their further growth and development.
The best way to do this is to cut several shading trees
from upper layer. On behalf of the increase of the seedling
number in the category under 20 cm it would be
appropriate to leave some of the cutting stems in the
stand and thus create perspective seedbeds for the
seedling emergence.




ŠUMARSKI LIST 13/2005 str. 156     <-- 156 -->        PDF

E. Klimo: VODOZAŠTITA - URAVNOTEŽENJE VODNIH ODNOSA U PROSTORU Šumarski lis! SUPLliMENT (2005), 154
3. Skupina referata:
VODOZAŠTITA - URAVNOTEŽENJE VODNIH ODNOSA U PROSTORU
I PROČIŠĆAVANJE IZVORSKIH VODA


Skupu predsjedava: Prof. dr. sc. Emil Klimo


Referati gornje skupine odnose se na kakvoću vode uvjetovane utjecajem različitih šumskih ekosustava
zatim na lizimetrijska istraživanja, monitoring podzemnih voda, vrijednost protuerozijske i vodozašitne
funkcije šume, kakvoću vode u gorskim vodotocima, utjecaj šume na kemijski sastav oborinske
vode te podatak o količini sitnoga korijenja obične smreke. U ovoj skupini održano je 10 referata. Tri referata
održali su znanstvenici iz Češke, dva iz Slovačke i pet iz Hrvatske.


Klimo i Kulhavy referiraju o pozitivnom utjecaju nizinske i gorske šume u Češkoj na kakvoću vode.
Huška referira o utjecaju šume i vode na ekologiju krajolika, Vrbek i dr. daju rezultate lizimetrijskih istraživanja
u šumi hrasta lužjaka i običnoga graba u različitim područjima Hrvatske, Prpić, Jurjević i Jakovac
izlažu rezultate obračunatih vrijednosti protuerozijske i vodozaštitne funkcije šuma za državne
šume u Republici Hrvatskoj dobivene po službenoj metodologiji iz Zakona o šumama Republike Hrvatske,
Pilaš i dr. izvješćuju o do sada instaliranom monitoringu podzemnih voda u Hrvatskoj, a Janeček iz
Praga preporučuje CN metodu za procjenu mogućega utjecaja vode iz šumskoga sliva.


Tikvić, Seletković i dr. istražuju utjecaj različitih šumskih ekosustava na kakvoću vode u vodotocima
dok Tikvić, Seletković, Magdić i Sojat istražuju stanje i odnose oborinskih voda u šumama Nacionalnoga
parka Plitvička jezera. Kovar ukazuje u svome referatu na važnost "aktivne zone" tla te daje rezultate
istraživanja za slivove različite šumovitosti za ekstremne godine (vlažne i sušne) u Češkoj. Jaloviar iz
Zvolena referira o istraživanju raspodjele sitnoga korijenja u rizosferi kulture obične smreke sađene u
različitim razmacima.


3rtl group of papers:


WATER PROTECTOIN -BALANCING WATER RELATIONS
IN SPACE AND PURIFYING SPRING WATERS


Chaired by: Professor Emil Klimo, PhD


The papers in this group deal with water quality in different forest ecosystems, lyzimetric research,
groundwater monitoring, the value of anti-erosive and water-protective forest functions, water quality in
mountain watercourses, the impact of forests on the chemical composition of precipitation and data on
the quantity of tiny roots of common spruce. Three papers were presented by Czech, two by Slovakian
and five by Croatian scientists.


Klimo and Kulhavy report on the positive impact of lowland and montane forests on water quality in
the Czech Republic, Huska reports on the effect of forests and water on landscape ecology, Vrbek et al.
present the results of lyzimetric research in the forest of pedunculate oak and common hornbeam in different
areas of Croatia, Prpić, Jurjević and Jakov ac provide the results of calculated values of anti-erosive
and water-protective forest functions for state forests in the Republic of Croatia obtained by using
the official methodology set down in the Forest Act of the Republic of Croatia, Pilaš et al. report on the
installed groundwater monitoring in Croatia, and Janaček from Prague recommends the use of the CN
method for the assessment of some possible effects of water from a forest catchment area.


Tikvić, Seletković and others investigate the impact of different forest ecosystems on the quality of
water in watercourses, whereas Tikvić, Seletković, Magdić and Sojat explore the condition and relations
in precipitation waters in the forests of the Plitvice Lakes National Park. Rovar points to the importance
of "active soil zone " and provides research results for differently forested catchments for extreme years
(wet and dry) in the Czech Republic. Jalovarfrom Zvolen reports on research into the distribution of tiny
roots in the rhizosphere of a common spruce culture planted with different spacing.