DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 11-12/2017 str. 51     <-- 51 -->        PDF

the initial route location in the field. In this context, S-MCDM methods and GIS-based forest road route determination applications are very important. S-MCDM integrated with GIS is one of the Multi Criteria Decision Methods. Spatial Technique for Order Preference by Similarity to Ideal Solution (S-TOPSIS), spatial analytic hierarchy process (S-AHP), spatial promethee (S-PROMETHEE), and spatial simple additive weighting (S-SAW) are the most commonly used of these methods. In this study, S-TOPSIS was used. In previous scientific studies, S-AHP work has been widely used and the advantages of this method have been clearly studied (Majnounian et al., 2007;Abdi at al.,2009;Naghi et al., 2012;Hayati et al., 2012; Hayati et al., 2013; Çalışkan, 2013; Pellegrini et al 2013; Lashi et al 2016). In future studies, results can be proven by using other spatial S-MCDM methods. Enache et al. (2013) which used the weighted preferences of the evaluation sub-criteria reported in this study to calculate the total utility scores of four forest road scenarios using MAUT.
The GIS has many effective tools which enable the use of analytic functions. The GIS has the capability to combine thematic data layers to create a cost surface from which the optimal forest road route is calculated. The S-MCDM method integrates GIS technologies with complex decision-making in a way that provides a successful outcome (Yıldırım et al 2016b). This study demonstrated the increased effectiveness of integrating GIS technologies with S-TOPSIS, especially in forest road route.
CONCLUSION
ZAKLJUČCI
In this study, S-TOPSIS was applied to integrate environmentally sound into the design of a forest road route. Using the current forest road route and the GIS-based S-TOPSIS method, an environmentally sound forest road route was determined considering environmental criteria’s. The environmental factors which affect the forest road route and necessary geographic data layers were determined accordingly and were then classified according to the standards. Analyses were performed using this method for the design of forest road routes. The S-TOPSIS method was effectively used in applications of cost distance-cost path algorithms based on GIS. This study has provided very positive results in the determination of forest road routes with the advantage of the algorithm used in the calculation cost