An Introduct DESIGN OF TIMBER STRUCTURES

by

Phillip O. Reece

A.M.I.C.E., M.I.STRUCT.E., A.M.I.MUN.E.

DIRECTOR : TIMBER DEVELOPMENT ASSOCIATION LTD.

Spon

AN INTRODUCTION TO THE DESIGN OF TIMBER STRUCTURES

by

PHILLIP O. REECE

A.M.I.C.E., M.I.Struct.E., A.M.I.Mun.E.

Director Timber Development Association Ltd.

Illustrations by Arthur Button

LONDON E. & F. N. SPON LTD 22, Henrietta Street, W.C.2

1949

PREFACE

IMBER has the unique distinction of being a potentially inexhaustible source of structural material: it was one of the first materials to be used for construction and, being a crop, will probably be one of the last. Because of its antiquity, an extensive empirical technique was developed long before science and mathematics had provided a theory for design, a circumstance which to some extent explains why timber not only became, but tended to remain, the material of the craftsman rather than of the mathematician.

Modern timber mechanics is a subject still in its infancy, being at most a few decades old, and this book has been written in an attempt to provide an introduction to a study of the information put at the disposal of the designer by research institutions in this country and abroad. It is hoped that the book will interest engineers who know little about timber, timber men who know little about engineering, and students who wish to learn something of both. An introductory textbook of this kind necessarily contains much that will be elementary to many readers; for such it is hoped that the bibliography will provide ample material for further study.

My grateful acknowledgements are due to the works referred to in the bibiography, to friends and colleagues in the timber trade and the engineering profession, and in particular to the many helpful discussions with members of the staff of the Forest Products Research Laboratory at Princes Risborough.

While I am responsible for any errors that remain, I wish to express my gratitude to Dr. H. E. Desch and Mr. B. Alwyn Jay for their invaluable assistance in checking Chapters 1 and 2. For permission to use certain of the photographs and diagrams my thanks are due to the Forest Products Laboratory of the U.S. Department of Agriculture and the Douglas Fir Plywood Association, to the British Standards Institution, and to Messrs. MacAndrews & Forbes Ltd. for information on Timber Connectors. Figures for which Crown Copyright is reserved were prepared at the Forest Products Research Laboratory,

CONTENTS

CHAPTER 1

PAGE

II

THE STRUCTURE AND COMPOSITION OF WOOD

Anatomy and growth of trees—1.02 Classification and nomenclature—1.03 Wood tissue—1.04 Cell structure—1.05 Chemical composition

1.01

4

CHAPTER 2

CHARACTERISTICS OF WOOD AND SOME RELATED PROPERTIES

2.01 Growth rings—2.02 Sapwood and heartwood— 2.03 Conversion—2.04 Moisture—2.05 Specific gravity—2.06 Compression wood—2.07 Compression failures—2.08 Dead wood—2.09 Grain 2.10 Texture—2.11 Figure—2.12 Knots—2.13 Sap stain— 2.14 Shakes — 2.15 Checks — 2.16 Wane — 2.17 Identification ...

23

CHAPTER 3

ELASTIC BODIES AND EXTERNAL FORCES

3.01 Introduction—3.02 Matter and external forces—3.03 Hooke's law—3.04 Poisson's ratio—3.05 Shear modulus—3.06 Bending moments—3.07 Superposition—3.08 Shear force—3.09 Flexure—3.10 Shear stress—3.11 Deflection of beams

42

CHAPTER 4

WOOD IN RELATION TO ELASTIC THEORY

4.01	General assumptions—4.02 Homogeneity—4.03
	Hooke's law-4.04 Elasticity-4.05 Modulus of
	elasticity-4.06 Plane sections-4.07 Isotropicity-
	4.08 Modulus of rupture-4.09 Theories of flexure-
	4.10 Duration of stress

CHAPTER 5

Some Strength Values of Clear Wood 5.01 Introduction—5.02 Notes on table.

82

67

CHAPTER 6

STATISTICAL ANALYSIS

6.01	Variability-6.02		Freque	ency-6.09	3 Dispe	Dispersion-		
	6.04	Distribution	-6.05	Normal	distrib	ution-		
		Averages						

87

CHAPTER 7

THE SELECTION AND GRADING OF TIMBER

7.01 Introduction—7.02 European grading—7.03 American grading—7.04 British grading—7.05 B.S. Grading rules—7.06 Standard sizes

CHAPTER 8

LOADS, DESIGN AND STRESSES

8.01 Introduction—8.02 Dead loads—8.03 Superimposed floor loads—8.04 Superimposed roof loads—8.05 Wind pressure—8.06 Margin of safety—8.07 Design and stresses — 8.08 Modification factors — 8.09 Modification factors for decay—8.10 Inclined grain

122

CHAPTER 9

BEAMS

9.01 Shear, bending and deflection—9.02 Duration of loading—9.03 Floor boards—9.04 Bearings—9.05 Notched beams—9.06 Lateral support—9.07 Laminated beams—9.08 Built-up beams

145

CHAPTER 10

COLUMNS AND STRUTS

CHAPTER 11

CONNECTIONS

CHAPTER 12

PLYWOOD

12.01 Description — 12.02 Physical properties — 12.03 Grading—12.04 Standard sizes—12.05 Geometrical properties—12.06 Working stresses—12.07 Tension —12.08 Compression—12.09 Shear—12.10 Bending—12.11 Deflection.

..

. .

INDEX

214

231

PAGE

107

	TABLES		
TABLE			PAGE
2.01	Typical moisture contents for structural components	in	
	buildings		30
3.01	Bending moments, shear and deflection of beams for sta	n-	
0.00		• •	51
3.02		••	55
5.01 6.01		••	83
7.01	D	• •	99
		••	III
7.02		•	119
7.03 8.01	S	•	120
8.02	Superimpered and load		4-125
8.03	XAT: 1 1 1. C · 1 ·	•	126
8.04		•	129
A THE STATE OF	Wind pressure on roofs	•	130
8.05 8.06		•	139
	Proving strange for hand 1	•	140
8.07	X1 C : 20 1 20	•	140
8.08		•	143
9.01		•	151
9.02		•	155
9.03	Modification factors K_3 (bearings)	•	156
9.04		•	161
9.05		164	-165
10.01	Modification factors K_{θ} (columns)	•	176
10.02	Modification factors K_{10} (column loading)	•	178
10.03	Effective length of columns	•	179
10.04	Modification factors K_{11} (flexural compression) .	•	182
10.05	Modification factors K_{12} (flexure and compression) $\hfill \ .$	•	185
11.01	Spacing of nails		192
11.02	Permissible loads on nails inserted at right angles to the	2	
	grain		193
11.03	Wood Screws. Permissible loads	•	195
11.04	Bolt diameter factors		197
11.05	Bolts. Allowable load on one bolt in a two-member join		
		~~	-201
2.01	Plywood grades and classification		216
2.02	Standard sizes of exterior type "Plypanel"		217
2.03	Geometrical properties of plywood sections		221
2.04	Working stresses for Douglas fir plywood in dry locations		222
2.05	Working stresses for Douglas fir plywood in damp or wet locations		223