DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 13/2005 str. 197     <-- 197 -->        PDF

IZLAGANJE NA ZNANSTVENOM SKUPU - PRESENTATION AT THE INTERNATIONAL SYMPOSIUM Šumarski list - SUPLEMLNT (2005), 195-201
UDK 630* 116


UPORABA METODE CN-KRIVULJA ZA PROCJENU UTJECAJA
ŠUMA NA POVRŠINSKO OTJECANJE


APPLICATION OF THE METHOD OF RUNOFF CURVE NUMBERS TO
EVALUATE THE EFFECT OF FOREST ON SURFACE RUNOFF


Miloslav JANEČEK*


SAŽETAK: Šuma općenito predstavlja vrlo djelotvoran biljni pokrov. Ona
pojačava retencijski kapacitet vode nekog sliva i štiti tlo od erozije. Međutim,
zbog ekstremne varijabilnosti hidroloških osobina dubljih slojeva tla, a posebice
površinskog dijela (listinac), šuma ponekadprouzročuje znatne količine
površinskog otjecanja, koje, između ostalog, dovode do erozije tla.


Kao sredstvo za procjenu mogućeg otjecanja iz šumskog sliva do 10 km
može se preporučiti CN-metođa, a posebice nedavno izrađen HydroCad model
http://www.hydrocad.net. koji se temelji na ovoj metodi.


Općenito govoreći, šumske se sastojine smatraju
najboljim tlom koje pridonosi smanjenju površinskog
otjecanja i erozije. Ovo se djelovanje općenito temelji
na sljedećem:


Zaštita tla od razornog djelovanja jakih kiša;


Podrška vodne infiltracije u tlo;


Poboljšanje konzistencije tla;


Smanjenje prijenosne snage vode i akumulacije
površinskog otjecanja;


Zaustavljanje površinskog otjecanja i ispranog tla.
Tablica 1. Vrednovanje površinskog sloja humusa


Table 1 Evaluation of the surface layer of humus


Površinski sloj humusa - Surface layer of humus
Zbijeno -Compacted
Srednje zbijeno - Moderately compacted
Meko ili rahlo - Mellow or loose


Primijene li se odgovarajući uzgojni zahvati u šumi,
šumsko tlo postaje porozno, a njegov kapacitet infiltracije
i akumulacije je velik. Za određivanje hidroloških
uvjeta bilo koje šume, potrebno je poznavati hidrološku
grupu tla, sloj listinca, humusni sloj i njegov tip.


Miloslav Jancček, Istraživački institut za kultiviranje i zaštitu
tla, Prag-Zbraslav, Žabovreska 250, 156 27 Praha 5 - Zbraslav,
Czech Republic, telefon: 00420 257 921 497
e-mail: janecek@vumop.cz


Treba napomenuti, da sve šume ne ispunjavaju potpuno
ovu funkciju kako je iskazano vrednovanjem
šumskih sastojina metodom krivuljnih brojeva (CN)
(Kent-1971 etal.)


Hidrološki uvjeti šumskih sastojina uglavnom se
odnose na gustoću pokrova — vegetacije, listinca, itd.
Naravno, lišće, iglice, grančice, kora i ostali otpad vegetacije
na šumskom se tlu raspada i stvara listinac iz
kojega nastaje sloj šumskog tla. Vrednovanje šumskog
tla metodom CN izvodi se kako slijedi:


Razred zbijenosti - Compaction class


1


2


3


Prema metodi CN, postoje četiri hidrološke grupe
tala na temelju minimalne stope infiltracije u tlo bez
pokrova nakon dugoročne zasićenosti.


Ukoliko je sloj listinca niži od 1 cm, šumsko tlo se
ne smatra zaštićenim, a razred hidroloških uvjeta je
umanjen za koeficijent 0.5.


Razlike u hidrološkim uvjetima općenito se izražavaju
za šume prema metodi CN - vidi Tablicu 3.




ŠUMARSKI LIST 13/2005 str. 198     <-- 198 -->        PDF

M. Janeček: UPORABA METODE CN-KRIVULJA ZA PROCJliNU UTJECAJA ŠUMA
Šumarski list - SUPLEMENT (2005), 195-201
Tablica 2. Hidrološka grupa tala


Table 2 Hydrological groups of soils
Grupe Opis hidroloških karakteristika
Groups Description of hydrological characteristics


A
Tla s visokom stopom infiltracije (>0.12 mm . min"1) također pri punoj zasićenosti, sadržavaju uglavnom
duboke pijeske ili šljunke s dobrom ili prekomjernom drenažom.


A
Soils with high infiltration rate (> 0.12 mm x min ) also at full saturation, comprising mostly deep
sands or gravels with good or excessive drainage.


B
Tla srednje stope infiltracije (0.06-0.12 mm x min" ) također pri punoj zasićenosti, sastoje se uglavnom od srednje
dubokih ili dubokih tala, sa srednjom ili dobrom drenažom, ilovasto-pjeskovitim ili glinasto-ilovastim tlima.


B Soils with medium infiltration rate (0.06- 012 mm x min ) also at full saturation, comprising mostly
medium-deep or deep soils, with medium or good drainage, loamy-sandy or clayey-loamy soils.
C Tla s niskom stopom infiltracije (0.02 - 0.06 mm x min"1) i pri punoj zasićenosti, sastoji se uglavnom od tala
s niskim propusnim slojem u profilu tla, te glinasto-ilovastih ili glinenih tala.


C
Soils with low infiltration rate (0.02 - 0.06 mm x min ) also at full saturation, comprising mostly
soils with a low permeable laxer in the soil profile and clayey-loamy or clayey soils.


D
Tla s vrlo niskom stopom infiltracije (<0.02 mm x min"1) i pri punoj zasićenosti, sastoji se uglavnom od gline
s visokim bubrenjem, tla s trajno visokom razinom podzemne vode, tla sa slojem gline na površini
ili blizu površine, te plitka tla nad gotovo nepropusnim podslojem


D
Soils with very low infiltration rate (< 0.02 mm x min ) also at full saturation, comprising mostly clays
with high swelling, soils with permanently high groundwater level, soils with a clay layer on the surface
or closely under the surface and shallow soils above the almost impermeable subsoil.


100


15


10


2


3 ~a
II


5


1 -1 & Cj


0 -


Razred hidroloških uvjeta šume


Class of forest hydrological conditions


Slika 1. Nomogrami za određivanje broja krivulje otjecanja (CN)
u odnosu na grupu tla i hidrološke uvjete šume
Figure 1 Nomograms for determination of runoff curve number 2 3 4 5
(CN) in relation to the soil group and forest hydrological Razred hidroloških uvjeta šume
conditions Class of forest hidrological conditions


Tablica 3. Hidrološki uvjeti šume izraženi pomoću CN
Table 3 Hydrological conditions of the forest expressed by CN


Hidrološki uvjeti šume
Hydrological conditions of forest
Broj krivulje otjecanja CN
za hidrološku grupu tla
Runoff curve number CN
for hydrological groups of soils
A B C D
Loši -Bad 45 66 77 83
Srednje-dobri Medium-
good 36 60 73 79
Dobri Good
30 55 70 77


Gornje vrijednosti brojeva krivulje otjecanja opisuju
potencijal otjecanja iz sliva — vidi grafikon i SI. 2.




ŠUMARSKI LIST 13/2005 str. 199     <-- 199 -->        PDF

M. Janeček: UPORABA METODE CN-KRIVULJA ZA PROCJENU UTJECAJA ŠUMA . Šumarski list - SUPLEMENT (2005). 195-201
100


120


100
90


80


Fl?


E


80


H


60


s Y


70


a


40


60
20


50


40


20 40 60 80 100 120


Zbroj oborina (mm)


Precipitation sum (mm)
Slika 2. Odnos izravne dubine otjecanja (Hr) s količinom oborina (Hp) i brojevima krivulje otjecanja (CN)


Figure 2 The relationship of direct runoff depth (Hr) with precipitation amount (HJ and runoff


curve numbers (CN)


Gornji odnosi temelje se na pretpostavci daje omjer
volumena otjecanja i količine bujica izazvanih kišom
jednak omjeru volumena intercepcije za vrijeme otjecanja
s potencijalnim volumenom, kojega bi prihvatilo tlo
i pokrov.


Otjecanje obično dolazi nakon neke akumulacije ili
kiše, što znači nakon početnog gubitka koji je zbroj intercepcije,
infiltracije i površinske akumulacije procijenjene
na količinu od 20 % potencijalne retencije
(prema pokusnim mjerenjima).


Ova jednadžba izvedena je iz gore navedenih odnosa:


(Hp-0.2A)2
H [mm] Hp > 0.2A
(H+0.SA)


gdje su Hr = izravno otjecanje (mm)
Hp = količina bujice od kiše, obično
maksimalno tijekom 24 sata (mm)
A = potencijalna retencija (mm) izražena
brojem krivulje kao


1000


A = 25.4


C7V-10


Osim hidroloških osobina tla i sustava uporabe zemljišta,
otjecanje ima posebnu vezu sa sadržajem vlage u
tlu. Tri su situacije primijenjene u metodi CN: tlo je jako
suho ili srednje natopljeno, ili prekomjerno natopljeno
s vodom u odnosu na pojavu prethodne kiše.


Kao što je dokumentirano grafikonom odnosa između
brojeva krivulja otjecanja CN i hidroloških grupa
tala, razred hidroloških uvjeta šume i stupanj zasićenosti
tla, djelovanje šume na smanjenje površinskog
otjecanja i na eroziju može biti značajno drukčije (Janeček
-2002).




ŠUMARSKI LIST 13/2005 str. 200     <-- 200 -->        PDF

M. Jancček: UPORABA METODE CN-KRIVULJA ZA PROCJENU UTJECAJA SUMA .
Šumarski list - SUPLEMENT (2005), 195-201
uv


.´$


7
7
/ ,
/


yu


/


80


/ /


/
/


/U


/
/
r


/


60


03
/


"S
f


.2, §


/ Y


DU
´


/ /


/


J2^
/ / &


40


CQ /
/


JU
/ s ~7


/


/ s


20
/ /
/ /
1U


/ /


*r
^


A ^


0 10 20 30 40 50 60 70 80 90 100


Broj krivulje otjecanja (CN) za IPS II


Runoff curve number (CN) for IPS II


Slika 3. Utjecaj sadržaja vode u tlu (IPS - suho tlo, IPS II - srednje zasićeno tolo, IPS III zasićeno
tlo) na promjenu u broju krivulje otjecanja (CN)


Figure 3 The influence of water content in the soil (IPS-city soil, IPS II -medium-satura-ted
soil, IPS III -saturated soil) on a change in the runoff curve number (CN)


Gornji grafikon ilustrira utjecaj zasićenosti na proputa
više, toliko je puta propusnije tlo. Ova činjenica
mjene vrijednosti brojeva krivulja otjecanja CN, npr. bila je iznenađenje tijekom zadnje poplave u Češkoj,
CN = 30 će se smanjiti na CN = 15 na suhim tlima, a kada su iznimno velike količine vode istekle iz šumpovećati
će se na CN = 50 na natopljenim tlima. skih kompleksa, jer je tlo bilo natopljeno prethodnim


Slika 4 prikazuje utjecaj promjena u krivuljama velikim kišama.
otjecanja CN, te opisuje hidrološke karakteristike šumskih
zemljišta na početku površinskog otjecanja.


Grafikon prikazuje količine oborina na početku
površinskog otjecanja. Ako je, npr. CN = 30, količina
oborina mora prelaziti 120 mm (da bi uzrokovala
površinsko otjecnaje), dok je ono samo 10 mm pri CN
= 80. On također određuje kapacitet tla i pokrova za
zadržavanje vode pri danim hidrološkim karakteristikama
opisanim brojevima krivulja otjecanja CN.


Iako šuma može obično prihvatiti 4-5 puta veću
količinu vode nego ista površina bez vegetacije, potrebno
je uzeti u obzir da nakon prethodnih kiša pri punoj
zasićenosti tla izravno se otjecanje iz šume povećava
više puta nego s površine bez vegetacije: koliko




ŠUMARSKI LIST 13/2005 str. 201     <-- 201 -->        PDF

M. Janeček: UPORABA METODE CN-KR1VULJA ZA PROCJENU UTJECAJA ŠUMA . Šumarski list SUPLEMENT (2005), 195-201
[mm]


´


1-KD /


/


/


/


SO.


-po


Qci


35.
4a


SO


aa


o


B>G


Slika 4. Količina oborine kao početak izravnog otjecanja u uvjetima opisanim
brojem krivulje otjecanja CN


Figure 4 The precipitation amount that is the incipience of direct runoff in conditions
described by a runoff curve number CN


ZAKLJUČAK - Conclusion


Šuma općenito predstavlja vrlo djelotvoran biljni Za procjenu mogućeg otjecanja iz šumskog sliva do
pokrov. Ona pojačava retencijski kapacitet vode nekog 10 km2, preporučuje se metoda CN, a posebice nedavno
sliva i štiti tlo od erozije. Zbog ekstremne varijabilnosti izrađen model HydroCad http://www.hydrocad.net..
hidroloških osobina dubljih slojeva tla, posebice listin-koji se temelji na ovoj metodi.
ca, iz šume ponekad otječu velike količine površinske
vode, koje dovode do erozije tla.


LITERATURA References


K e n t, K. M. - et al, 1971: Hydrology Section 4, Na-Janeček, M., 2002: Ochrana zemedelske pudy pred
tional Engineering Handbook SCS. Washington erozi. ISV Praha, s. 201.


D. C, USDA, s. 350.


ŠUMARSKI LIST 13/2005 str. 202     <-- 202 -->        PDF

PRESENTATION AT THE INTERNATIONAL SYMPOSIUM
Šumarski list - SUPLEMENT (2005), 195-201


APPLICATION OF THE METHOD OF RUNOFF CURVE NUMBERS
TO EVALUATE THE EFFECT OF FOREST ON SURFACE RUNOFF


Miloslav JANEČEK*


SUMMARY: The forest, in general, can be regarded as a very efficient vegetation
cover. It enhances the water retention capacity of a catchment and
protects the soil against erosion. However, because of the extreme variability
of hydrological properties of underlying soils, especially their uppermost layers
(the forest litter), the forest may sometimes generate a considerable amount
of surface runoff causing, among other impacts, soil erosion.


The CN´-method and, in particular, the recently developed HydroCAD model
(http://www.hydrocad.net), which is based on this method, can be recommended
as tools for estimation of probable runoff from the forest catchments
up to 10 km .


Key words: forest, retention capacity, surface runoff, hydrological con


ditions


In general, forest stands are considered as the best
soil cover markedly contributing to a reduction of surface
runoff and erosion. These effects are generally based
on:


protection of soil from destructive effects of incident
raindrops


support of water infiltration into the soil


improvement of soil consistence


reduction of the transporting power of water and
surface runoff accumulation


retardation of surface runoff and washed soil.
It is to note that not all forest stands fully fulfil this
function as indicated by the evaluation of forest stands
by the method of curve numbers (CN) (Kent - 1971


et al.).


Hydrological conditions of forest stands are mainly
related with the density of the cover - vegetation, litter,
etc. Naturally, leaves, needles, twigs, bark and other
residues of vegetation on the forest soil are decomposed
to form litter from which the layer of forest floor
originates. Evaluation of the forest floor by the CN
method is as follows:


*
Miloslav Janeček, Research Institute for Soil and Water Conservation
Praha, Žabovreska 250, 156 27 Praha 5 - Zbraslav,
Czech Republic, phone: 00420 257 921 497
e-mail: janecek@vumop.cz
If appropriate cultural practices are applied in the
forest, the forest floor is porous and its infiltration and
accumulation capacity is high. To determine hydrological
conditions of any forest it is necessary to know
the hydrological group of soil, litter layer, humus layer
and its type.


According to the CN method there exist four hydrological
groups of soils on the basis of minimum rate of
infiltration into the soil without cover after long-term
saturation.


The class of hydrological conditions is determined
according to the layer of litter or forest floor and its
compaction.


If the litter layer is lower than 1 cm, the forest floor
is not considered as protected and the class of hydrological
conditions is reduced by the coefficient 0.5.


Differences in hydrological conditions are generally
expressed for forests by the CN method - see Table 3.


The above values of runoff curve numbers describe
the potential of runoff from the watershed - see the
graph in Fig. 2.


The above relationships are based on an assumption
that the ratio of runoff volume to the amount
of torrential rain equals the ratio of the volume of water
intercepted during runoff to potential volume that
may be intercepted by the soil and cover.




ŠUMARSKI LIST 13/2005 str. 203     <-- 203 -->        PDF

M. Janeček: APPLICATION OF THE METHOD OF RUNOFF CURVE NUMBERS TO EVALUATE Šumarski list SUPLEMENT (2005), 195-201
Runoff usually originates after some accumulation
of rainfall, that means after an initial loss that is the
sum of interception, infiltration and surface accumulation
that was estimated to amount to 20 % of potential
retention (by experimental measurements).


This equation was derived from the above-mentioned
relationships:


(//„-0.2A)2
Hr = - [mm] Hp > 0.2A
(#,,+0.8/1)


where Hr= direct runoff (mm)
H = amount of design torrential rain,
usually maximum over 24 hours (mm)
A = potential retention (mm) expressed
by the curve number as


(CN-10)


Besides the hydrological properties of soils and
systems of land use runoff is particularly related with
soil moisture content. Three situations are applied in
the CN method: the soil is either quite dry or medium
saturated or oversaturated with water in relation with
the occurrence of preceding rainfall.


As documented by the graph of the relationship between
runoff curve numbers CN and hydrological


groups of soils, class of forest hydrological conditions
and saturation degree of soil the effects of the forest on
a reduction of surface runoff, and on erosion, may be
markedly different (Janeček - 2002).


The above graph illustrates the influence of saturation
on changes in the values of runoff curve numbers
CN, e.g. CN = 30 will decrease to CN = 15 on dry soils
and it will increase to CN = 50 on saturated soils.


Fig. 4 shows the influence of changes in runoff curve
numbers CN, describing hydrological characteristics
of forest lands, on the incipience of surface runoff.


The graph shows the precipitation amounts resulting
in the incipience of surface runoff. If e.g. CN = 30,
the precipitation amount must exceed 120 mm (to cause
surface runoff) while it is only 10 mm at CN = 80. It
also determines the water-retaining capacity of soil
and its cover for the given hydrological characteristics
described by runoff curve numbers CN.


Even though the forest can usually intercept a 4-5
times higher amount of water than the same area without
vegetation, it is necessary to take into account that
after preceding rains at full saturation of soil direct runoff
from the forest increases more times than from the
area without vegetation: the more times the more permeable
is the soil. This fact was surprising during the
last flood in Bohemia when unusually large amounts
of water ran off forest complexes because the soil was
saturated with preceding heavy rains.


CONCLUSION


In general, forests arc a very efficient soil cover
increasing the watershed retention and protecting the
soil from erosion. As the range of hydrological characteristics
of soils, and especially of their cover- litter is
large, it is necessary to be aware of the fact that large
amounts of water may leave the forest in the form of
surface runoff, causing also soil erosion.


To estimate potential runoffs from the forest in a
watershed maximally 10 km´ in size we can recommend
to use the CN method or a recently derived model
on the basis of this method HydroCAD
http://www.hydrocad.net.