DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 5-6/2012 str. 34     <-- 34 -->        PDF

motrenja, na kojima su takve pojave prisutne i registrirane, stoga bi model svakako trebalo iskoristiti i u analizi i prognozi zdravstvenog stanja šume.
Na kraju je važno naglasiti da se cjelokupni rad bazira na interdisciplinarnom znanstvenom pristupu. Sinteza matematičkih, statističkih, informatičkih i bioloških metoda rezultirala je novom znanstvenom interdisciplinarnom metodikom koju je moguće primijeniti na parametrizaciju i formalizaciju kompleksnih prirodnih sustava.
Literatura
References
Ahas R, A. Aasa, A. Menzel, V.G. Fedotova and H. Scheifinger. 2002: Changes in European spring phenology, International Journal of Climatology, No 22: 1727–1738.
Ahas R., J. Jaagus, A. Aasa, 2000: The phenological calendar of Estonia and its correlation with mean air temperature, International Journal of Biometeorology, 44(4): 159–16.
Broadmeadow M.S.J., D. Ray and C.J.A. Samuel, 2005: Climate change and the future for broadleaved tree species in Britain, Forestry, Vol 78, No.2.145–161., Oxford
Chmielewski F-M., T. Rőtzer, 2001: Response of tree phenology to climate change across Europe, Agricultural and Forest Meteorology, 108: 101–112.
Chmielewski F-M., T. Rőtzer, 2002: Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes, Climate Research 19: 257–264.
Jaagus J., R. Ahas, 2000: Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia, Climate Research 15(3): 207–219.
Lončar Lj., M. Hell, V. Dušak, 2006: A System Dynamics Model Of Forest Management, U: Proceedings of the 28thInternational Conference on Information Tehnology, ITI 2006,, Cavtat/Dubrovnik.
Lucas N.S., P.J. Curran, 1999: Forest ecosystem simulation modelling, The role of remote sensing, Progress in Physical Geography, 23: 391.
Menzel A., 2000: Trends in phenological phases in Europe between 1951 and 1996., International Journal of Biometeorology, 44(2): 76–81.
Ministarstvo zaštite okoliša, prostornog planiranja i graditeljstva, 2006: Nacional report of Republic Croatia according to the UN Framework Convention on Climate Change (UNFCCC), Zagreb
Tikvić, I., Z. Seletković, D. Ugarković, 2006: Odnos razvoja fenoformi hrasta lužnjaka i mikroklime šumskog tla, Glasnik za šumske pokuse, pos. izd 5, 91–104., Jastrebarsko
Scheifinger, H., A. Menzel, E. Koch, C. Peter and R. Ahas. 2002: Atmospheric mechanisms govering the spatial and temporal variability of phenological phases in central Europe, International Journal of Climatology, 22: 1739–1755.
Seila, A.F., V. Čerić, P. Tadikamalla, 2003: Applied Simulation Modeling, Thomson Books Cole, USA
Šestan, Lj., 2010: Konceptualni model nelinearnih dinamičkih eko-sustava, Disertacija, Fakulteta organizacije i informatike, Varaždin
Lj. Šestan, J. Čavlović, 2007: Razvoj simulacijskog modela regularne šume, Radovi – Šumarski institut Jastrebarsko 42 (1): 19–33.
Šestan, Lj., V. Dušak, 2011: A system dynamics approach to the modelling of the complex natural systems, 25th European Conference on Modelling and Simulation, European Council for Modelling and Simulation, 115., Krakow, Poland
Summary
The impact of climate change has been observed in case of occurrence and duration of seasons which in deciduous forest manifest through changing of the leaves. Monitoring changes in the development of leaves was carried out through phenological observations, where specific change corresponds to a particular phenophase. In researching this issue, despite numerous studies, phenophases have not been studied as a system, but individually and then compared (e.g. Ahas et al., 2002; Menzel, 2000). Most previous studies of this issue were related to classical statistical methods, such as descriptive statistics, linear regression, correlation, multiple regression (e.g. Ahas et al., 2002; Chmielewski and Rőtzer, 2001; Menzel, 2000). The most commonly used method, the method of linear regression, assumes a linear relationship between phenomena. However, as relations between elements of complex natural system are not always linear, the application of the linear regression method is not sufficient for the development of a model of the entire process, without losing specific components and including the environmental influence (Šestan 2010). Therefore, in this study, to model and study the effect of air temperature on the system of phenophases, the system-dynamic principle was applied.
The research of the impact of the most important climatic factor – air temperature, on the phenophases, was conducted on experimental plot in the pubescent oak forest (Quercus pubescens) on the island of Pag (Adriatic Sea). Systematic phenological observations were carried out there during period 1993–2005. Six phenophases marked as F0, F1...F5, were distinguished: