DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 5-6/2013 str. 17     <-- 17 -->        PDF

THE EFFECT OF HEAVY METAL POLLUTION IN SOIL ON SERBIAN POPLAR CLONES
Utjecaj onečišćenosti tla teškim metalima na klonove topola iz Srbije
Branislav Trudić, Marko Kebert, M. Boris Popović, Dubravka Štajner, Saša Orlović, Vladislava Galović, Andrej Pilipović
Summary
Oxidative stress is known as disturbed balance between antioxidative protection mechanism and production of reactive oxygen species, which can negatively influence on normal biological and metabolical processes in living organisms, such as poplar species. Phytoremediation is promising biotechnical method of cleaning of polluted soils by various pollutants: heavy metals, organic contaminants, pesticides, oil etc. Until today, poplars showed potential for regenerating polluted soils during phytoremediation process. This study represents results of oxidative stress profiles of three poplar clones (M1, B229 and PE 19/66) shoots from Institute of Lowland Forestry and Environment, University of Novi Sad, Serbia, while being treated by different concentration of three heavy metals in soil: Ni3+, Cu2+ and Cd2+. Biochemical parameters of oxidative stress which have been analyzed were: content of soluble proteins, intensity of lipid peroxidation, antioxidative capacity by ferric reducing antioxidative power assay and activity of superoxid dismutase. Results showed that the most acceptable phytoremediation response to heavy metal pollution in soil showed clone M1. Great differences between B229 and PE 19/66 clones were in response on soil heavy metal contamination, directly suggesting of not being suitable for possible phytoremediation application.
KEY WORDS: poplar clones, oxidative stress, phytoremediation, shoots
Introduction
Uvod
Two billion years ago, the appearance of oxygen in Earth’s atmosphere created conditions for the development of aerobic organisms. Aerobic organisms use oxygen during respiration to obtain energy by oxidation of organic molecules such as carbohydrates, proteins and lipids.
Aerobic metabolism is accompanied by the production of different, partially reduced chemical forms of oxygen, often much more reactive then the oxygen molecule itself. These oxygen species can interact with basic cellular structures and biomolecules, lead to a number of physiological disorders (Popović and Štajner, 2008, Kebert et al., 2011).
In order to survive, aerobic organisms have acquired mechanisms of antioxidant protection, and among others include the activities of antioxidant enzymes such as catalase, peroxidase, and gluhation peroxidase and superoxide dismutase. In addition to many enzymes and low molecular