DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu
ŠUMARSKI LIST 5-6/2013 str. 25 <-- 25 --> PDF |
Krstić, B., Stanković, D., Igić, R., Nikolić, N. 2007. The potential of different plant species for nickel accumulation. Biotechnology & Biotechnology, p: 431–436 Kumar, N., Dushenkov, V., Motto, H., and Raskin, I. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technolology, 29: 1232–1238 Laureysens, I., Bogaert, J., Blust, R., and Ceulemans, R. 2004. Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 187: 295–309 Marchiol, L., Assolari, S., Sacco, P., and Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, 132(1): 21–27 Nikolić, N., Kojić, D., Pilipović, A., Pajević, S., Krstić, B., Borišev, M. and Orlović, S. 2008. Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta biologica cracoviensia, Series Botanica, 50/2: 95–103 Kajitab, S., Osakabe, K. 2011. Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 142: 105–117 Pajević, S., Borišev, M., Rončević, S., Vukov, D., and Igić, R. (2008). Heavy metal accumulation of Danube river aquatic plants – indication of chemical contamination. Central European Journal of Biology, 3(3): 285–294 Pallet, K. E. and Dodge, A. D. 1979. Role of Light and Oxygen in the Action of the Photostyntetic Inhibitor Herbicide Monuron. Z Naturforsch, 34 c: 1058–1061 Pilipović, A. 2005. The role of poplar (Populus sp.) In the phytoremediation of water contaminated with nitrates. MSc Thesis, Faculty of agriculture, Novi Sad Pilipović, A., Nikolić, N., Orlović, S., Petrović, N., and Krstić, B. 2005. Cadmium Phytoextraction Potential of Poplar Clones (Populus spp.). Z Naturforsch, 60 c: 247–251 Pilipović, A., Orlović, S., Nikolić, N., Borišev, M., Krstić, B., Rončević, S. 2012. Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Šumarski list, 5–6: 273–281 Placer, Z.A., Cushman, L.L. and Johnson, B.C. 1966. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Analitical Biochemistry, 16: 359–364 Popović, B. and Štajner, D. 2008. Oxidative stress in plants, Agricultural Faculty, University of Novi Sad Trudić, B., Kebert, M., Popović, B.M., Štajner, D., Orlović, S., Galović, V. 2012. The Level of Oxidative Stress in Poplars due to Heavy Metal Pollution in Soil. Baltic Forestry, 18(2): 214–227. Quy Hai, D., Kovacs, K., Matkovics, I. and Matkovics, B. 1975. Properties of enzymes X. Peroxidase and superoxide dismutase contents of plant seeds. Biochemic Physiologie fȕr Pflanzen (BPP), 167: 357–359 Salin, M.L. 1988. Toxic oxygen species and protective systems of the chloroplasts. Physiology of Plants, 72: 681–689 Sen Gupta, A., Grene, Alscher, R., McCune, D. 1991. Response of Photosynthesis and Cellular Antioxidants to Ozone in Populus Leaves. Plant Physiology, 96(2): 650–655 Shaw, B.P. 1995. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biologica Plantarum, 37: 587–596 Solti, Á., Szôllôsi, E., Gémes, Juhász, A., Mészáros, I., Fodor, F., Sárvári, É. 2011. Significance of antioxidative defence under long-term Cd stress. Acta Biologica Szegediensis, 55(1):151–153 Somashekaraiah, B.V., Padmaja, K., Prasad, A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiology of Plants, 85: 85–89 Štajner, D., Orlović, S., Popović, M. B., Kebert, M. and Galić, Z. 2011. Screening of drought oxidative stress tolerance in Serbian melliferous plant species. African Journal of Biotechnology 10 (9):1609–1614 Susarla, S., Medina, V. F., and S. C. McCutcheon 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, 18: 647–658 Zacchini, M., Pietrini, F., Scarascia Mugnozza, G., Iori, V., Pietrosanti, L., Massacci, A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollution, 197: 23–34 Sažetak Oksidacijski stres je poznat kao narušena ravnoteža između antioksidacijskog mehanizma zaštite i proizvodnje reaktivnih kisikovih vrsta, što može negativno utjecati na normalne biološke i metaboličke procese u živim organizmima, kao na primjer kod topola. U cilju opstanka, aerobni organizmi su stekli mehanizme antioksidacijske zaštite, gdje su od enzimskih najistraženije aktivnosti antioksidativnih enzima kao što su katalaze, peroksidaze, glutation peroksidaze i superoksid dismutaza. Fitoremedijacija je obećavajuća biotehnička metoda čišćenja zagađenih tala raznim onečišćujućim tvarima poput: teških kovina, organskih kontaminanata, pesticida i dr. Do danas, topole su pokazale potencijal za regeneraciju onečišćenih tala tijekom fitoremedijacijskog procesa. Biokemijsko profiliranje statusa oksidacijskog stresa u drvenastim biljkama nije često istraživana u Srbiji i stoga je cilj ovoga pokusa bio ispitati utjecaj različitih koncentracija tri jona teških kovina, Ni3+, Cu2+ i Cd2+ na razinu oksidacijskog stresa tri klona, dvije različite vrste topole (Populus euramericana-M1; PE 19/66 i B-229 oba Populus deltoides vrsta). Biokemijski parametri za određivanje razine oksidacijskog stresa su: lipidna peroksidacija (LPx), test redukcijske snage željeza (FRAP), superoksid dismutaze (SOD) aktivnost i sadržina topivih |