DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagoðeno pretraživanje po punom tekstu
ŠUMARSKI LIST 11-12/2013 str. 37 <-- 37 --> PDF |
mtDNA lineages ("A" and "B") observed. Moreover, one rather bright-coated individual was detected belonging to the Eastern European beaver group (C. f. pohlei). Following the argumentation line by Horn et al. (2010), we are interpreting the nuclear black-coat character typical for the Eastern European beaver group (cf. Durka et al. 2005) found in both major Western European beaver mtDNA lineages in Lower Austria as a strong indication for the assumed intraspecific hybridisation: to observe a female black-coated beaver characterised by, for instance, subsp. fiber mtDNA (i.e. representing a Western European beaver), the nuclear encoded coat colour should originate from the paternal line (i.e. representing an Eastern European beaver) following at least two reproduction events. In addition, also Kautenburger & Sander (2008) have speculated about possible hybridisation in their Austrian beaver sampling to explain some aberrant RAPD variation analysed. However, direct evidence of such intraspecific hybridisation cannot be deduced from the solely maternally inherited mtDNA data set alone. Therefore, further molecular markers, especially representing the nuclear genome, need to be analysed (cf. Horn et al. 2010). This will represent the next step in the genetic part of the beaver management in Lower Austria. In addition, we are also interested in assessing family size and local patterns of beaver activity ranges and dispersal routes. Therefore, we will also use microsatellite markers (see Frosch et al. 2011) within our Lower Austrian beaver sampling in the future. Acknowledgements Zahvala Financial support was given by the European Commission, Brussels, EU ("Ländliche Entwicklung") and the Lower Austria Landschaftsfonds, St. Pölten, Austria. We also thank the two referees for their comments on our manuscript. References Literatura Dewas, M., J. Herr, L. Schley, C. Angst, B. Manet, P. Landry, M. Catusse, 2012: Recovery and status of native and introduced beavers Castor fiber and Castor canadensis in France and neighbouring countries. Mammal Review, 42:144–165. Ducroz, J.F., M. Stubbe, A.P. Saveljev, D. Heidecke, R. Samjaa, A. Ulevièius, A. Stubbe, W. Durka, 2005: Genetic variation and population structure of the Eurasian beaver Castor fiber in Eastern Europe and Asia. Journal of Mammalogy, 86:1059–1067. Durka, W., W. Babik, J.-F. Ducroz, D. Heidecke, F. Rosell, R. Samjaa, A.P. Saveljev, A. Stubbe, A. Ulevicius, M. Stubbe, 2005: Mitochondrial phylogeography of the Eurasian beaver Castor fiber L. Molecular Ecology, 14:3843–3856. Felsenstein, J., 1981: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–376. Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. Frosch, C., P. Haase, C. Nowak, 2011: First set of microsatellite markers for genetic characterization of the Eurasian beaver (Castor fiber) based on tissue and hair samples. European Journal of Wildlife Research, 57:679–682. Frosch, C., R. Kraus, C. Nowak, 2012: The good, the bad, and the ragbag – differential genetic consequences of beaver reintroduction strategies in Germany. Book of abstracts, 6th IBS, p. 83, Ivanic-Grad, Croatia. Hall, T.A., 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41:95–98. Halley, D.J., F. Rosell, 2002: The beaver’s reconquest of Eurasia: status, population development and management of a conservation success. Mammal Review, 32:153–178. Halley, D.J., F. Rosell, 2003: Population and distribution of European beavers (Castor fiber). Lutra, 46:91–101. Horn, S., J. Teubner, J. Teubner, D. Heidecke, 2010: Mitochondrial DNA of beavers (Castor) in Germany. Artenschutzreport, 26:72–78. Horn, S., W. Durka, R. Wolf, A. Ermala, A. Stubbe, M. Stubbe, M. Hofreiter, 2011: Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species. PLoS ONE 6, e14622. Kautenburger, R., A.C. Sander, 2008: Population genetic structure in natural and reintroduced beaver (Castor fiber) populations in Central Europe. Animal Biodiversity and Conservation, 31.2:25–35. Lizarralde, M.S., G. Bailliet, S. Poljak, M. Fasanella, C. Giulivi, 2008: Assessing genetic variation and population structure of invasive North American beaver (Castor Canadensis Kuhl, 1820) in Tierra Del Fuego (Argentina). Biological Invasions, 10:673–683. Lutschinger, G., 1988: Situation der Biber (Castor fiber und Castor canadensis) in den Donau-Auen und deren Management. Bericht im Auftrag der Nationalparkplanung Donau-Auen, 26 pp., Vienna, Austria. Parz-Gollner, R., G. Hölzler, 2012: WTM – Bibermanagement NÖ 2008/2013. Arbeitsbericht 01–12/2011 und Biberverbreitung in NÖ (Stand 2011). Unveröffentl. Bericht im Auftrag der NÖ Landesregierung, Abt. Naturschutz, St.Pölten, Austria. Posada, D., K.A. Crandall, 1998: MODELTEST: testing the model of DNA substitution. Bioinformatics, 14:817–818. Saitou, N., M. Nei, 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406–425. Sbisà, E., F. Tanzariello, A. Reyes, G. Pesole, C. Saccone, 1997: Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene, 205:125–140. Sieber, J. 1999: The Austrian beaver, Castor fiber, reintroduction program. In: P. Busher, R. Dzieciolowski (eds.), Beaver protection, management and utilization in Europe and North America, Kluwer Academic, Plenum Publishers, 37–41, New York. Sieber, J., K. Bauer, 2001: Europäischer und Kanadischer Biber. In: F. Spitzenberger (ed.), Grüne Reihe des BMLFUW Bd.13, 366–374, Vienna, Austria. |