DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 3-4/2014 str. 51     <-- 51 -->        PDF

Konvencija o biološkoj raznolikost (Convention of biodiversity), 1992: http://www.cbd.int/doc/legal/cbd-en.pdf. United Nations.
Krstinić, A., 1996: Unutarpopulacijska i međupopulacijska varijabilnost hrasta lužnjaka. U: D. Klepac (ur.), Hrast lužnjak u Hrvatskoj, HAZU i "Hrvatske šume"p.o., Vinkovci – Zagreb, 112–118.
Krstinić, A., I. Trinajstić, J. Gračan, J. Franjić, D. Kajba, M. Britvec, 1996: Genetska izdiferenciranost lokalnih populacija hrasta lužnjaka (Quercus robur L.) u Hrvatskoj. U: Matić, S., J. Gračan, (ur.), Skrb za hrvatske šume od 1846. do 1996. Zaštita šuma i pridobivanje drva 2, Hrvatsko šumarsko društvo, 159–168. Zagreb.
NN 107/08 Pravilnik o područjima provenijencija svojti šumskog drveća od gospodarskog značaja
Pemac, D. i B. Tucic 1998: Reaction norms of juvenile traits to light intensity in Iris pumila (Iridaceae): a composition of population from exposed and shaded habitats. Plant Systematics and Evolution, 209: 159–176.
Perić, S., J. Gračan, B. Dalbelo-Bašić, 2000: Flushing variability of pedunculate oak (Quercus robur L.) in provenance experiment in Croatia. Glas. Šum. pokuse 37: 395–412. Zagreb.
Roth, V., 1999: Neka svojstva sjemena hrasta lužnjaka (Quercus robur L.) iz raznih sjemenskih zona i rajona Hrvatske. Rad. Šumar. Inst. 38(2): 195–210. Jatrebarsko.
Roth, V., 2003: Neki pokazatelji rasta hrasta lužnjaka (Quercus robur L.) iz sjemenskih zona i rajona Hrvatske u rasadničkom testu. Rad. Šumar. Inst. 38(2): 195–210. Jastrebarsko.
SAS 2000: SAS Institute Inc. SAS OnlineDoc®, Version 8. http://v8doc.sas.com/sashtml
Valladares, F., L. Balaguer, E. Martinez-Ferri, E. Perez-Corona, E. Manrique, 2002 a: Plasticity, instability and canalization: is the phenotipic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist, 156: 457–467.
Valladares, F., J.M. Chico, I. Aranda, L. Balaguer, P. Dizengremel, E. Manrique, E. Dreyer, 2002 b: Greater high light seedling tolerance of Quercus robur over Fagus sylvatica is linked to a greater phsiological plasticity. Trees, Structure and Function, 16: 395–403.
Valladares F., S. Arrieta, I. Aranda, D. Lorenzo, D. Tena, D. Sanchez-Gomez, F. Suarez, J.A. Pardos 2005: Shade tolerance, photoinhibition sesitivity and ohenotypic plasticity if Ilex aquifolium in continental-Mediterranean sites. Tree Phisiology, 25: 1041–1052.
Valladares, F., D. Danchez-Gomez, M. A. Zavala, 2006: Quantitative estimation f phenotipic plasticity: bridging the gap between the evolutionary concept and its ecoligical applicatrions. Journal of Ecology 94: 1103–1116.
Vidaković, M., 1966: Genetika i oplemenjivanje šumskog drveća. Sveučilište u Zagrebu. Zagreb, 277.
Vidaković, M., A. Krstinić, J. Gračan, 1996: Očuvanje genofonda hrasta lužnjaka u Hrvatskoj. U: D. Klepac (ur.), Hrast lužnjak u Hrvatskoj, HAZU i "Hrvatske šume"p.o., Vinkovci – Zagreb, 112–118.
White, T. L., W. T. Adams, D. B. Neale, 2007: Forest Genetics. Wallingford, UK, Cambridge, MA: CAB International,. p682.
West-Eberhard, M.J., 2003: Developnent Plasticity and Evolution. Oxford University Press, New York.
Summary
Previous studies of morphological and physiological trials of pedunculate oak in Croatia revealed genetic differentiation of local populations as well as high degrees of genetic diversity within each population. For further research of genetic diversity and differentiation of oak populations in Croatia, height and survival were analysed in a newly genetic test which contains progeny from 16 seed stands and one regular management forest stand (Table 1) at the age of four and five years, respectively (Figure 1 and 2). Survival for first analysed year was extremely good, but after the next vegetation period visibly decreased. Analysis of variance for mean height of two consecutive years (2010th and 2011th) revealed significant differences between populations (Table 2 and 3). Depending on the position within the genetic test same populations or families had different "dispersal" of mean height. We conducted a Tukey-Kramer test of the least square mean difference of population heights in order to determine their relationship, and to determine a possible geographic pattern of genetic differentiation (Table 5 and 6). Population HR 88 (FA Našice, Forestry Office Koška, Working unit Lacić-Gložđe) in both years differentiated as the highest of all, while other isolated groups of populations multiple overlapped. Comparing the significant difference in average height between populations and their geographic location geographic pattern of differentiation could not be observed (Table 5 and 6).
An analysis of phenotypic plasticity of the studied populations for population height at age of 5 years was performed (Table 7) because of statistically significant effect of blocks. No geographic pattern of differentiation between populations was observed for the plasticity indices (PIv, RDPI) (Table 8). Populations were categorized into phenotypically stable, unstable, and with average phenotypic plasticity with varying degrees of adaptedness to the test site conditions that prevailed in the analysed years. For reforestation and afforestation of similar habitats as was at the field trial it is recommended to use forest reproductive material from seed stands whose progeny expressed average to high phenotypic stability with a high degree of adaptedness (in terms of survival and height growth).
The results of this study should be considered as preliminary and stimulus for further research.
Key words: pedunculate oak, genetic test, adaptive genetic differentiation and diversity, phenotypic plasticity.