DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 9-10/2014 str. 20     <-- 20 -->        PDF

the diameter and height of trees. Therefore, it was expected that this model will be better than model 1, but that was not determined in this study. Mentioned model 3 proved to be better in just 3 cases.
Determining the amount of two categories of aboveground biomass wita a diameter less than 7 cm is particularly important because in the traditional wood harvesting this part of the forest residue usually remains unused, and in the production of wood chips is a usable income potential of our forests.
When comparing the features of marked and cut trees from three different felling areas, the highest yield of biomass is in the stands of higher site index, as expected. By increasing the dbh of trees the percentage of the biomass of wood >7 cm in total aboveground tree biomass increases, and this increase was most pronounced in the regular stand of the site index II. The share of brushwood 3–7 cm biomass is almost constant when dbh increases, while the share of the third component of biomass (branches <3 cm) reduces by increasing the dbh, which is more noticeable in regular stands.
Models proposed in this paper can represent the basis for further research in order to improve the planning of the production process and the subsequent analysis of felling results. Biomass of a diameter less than 7 cm represents a special potential, which share in certain stand conditions can reach over 10% of the total aboveground biomass of trees with larger dbh (including foliar biomass), and over 20% of the total aboveground biomass of trees with the smaller dbh (Figure 5).
KEY WORDS: Aboveground biomass, biomass calculation, allometric equations, European beech