DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 9-10/2014 str. 45     <-- 45 -->        PDF

respect to container type and planting method. After six years plants were also measured for stem diameter at the height of 10 cm above ground level. Morphological features with regard to container type were evaluated with analysis of variance (ANOVA) and multiple Turkey’s post hoc test. Relationship between survival rates in 2009 and initial seedling height, container type, soil preparation method, as well as their interactions, for the period between 2003 and 2009, was evaluated with the repeated measures analysis of variance. ANOVA was also used to test for the influence of container type and soil preparation method on the diameters of seedlings six years after planting.
Morphological features of seedlings derived from the samples of 20 seedlings per container type (Table 2), mostly showed significantly higher values in larger containers (T7/24 and T8/24) compared to smaller containers (MP53/12 and MP33/18). Root analyses also showed that roots of seedlings from smallest containers (MP53/12) were deformed to a high degree (Picture 2 and 3). In larger containers (MP33/18) root deformation was largely reduced. On the other hand, bind of roots into growing medium in seedlings grown in large containers was insufficient, although the roots were not deformed. Results indicate that the survival rates over six years in forest culture were influenced mainly by soil preparation (exp (β) = 3,4591; p < 0,0001), followed by container size in interaction with soil preparation method. Seedlings from larger containers (seedlings of higher quality) planted on ripped ground had several times lesser mortality compared to seedlings from smaller containers planted in pits excavated manually (exp (β) = 3,0710; p = 0,0024). Container type and soil preparation also exhibited influence on height growth of stone pine (Pinus pinea L.). Seedlings of stone pine grown in larger containers show more intensive growth and development in forest culture during first six years (F = 101,488; p < 0,000001). Similarly, seedlings planted on ripped ground have better growth and development characteristics compared to seedlings planted in pits with dimensions of 40 × 40 × 40 cm (F = 83,750; p < 0,000001). Six years after the planting seedlings grown initially in larger containers (T7/24 and T8/24) had larger stem diameters (F = 32,663; p = 0,00001) compared to seedlings originated from smaller containers (MP53/12 and MP33/18). Plants that were growing on ripped ground have managed to acquire larger stem diameters compared to seedlings planted in pits (F = 44,187; p = 0,00001).
Seedlings of stone pine (Pinus pinea L.) grown in container MP53/12 have developed highly deformed root systems because of inadequate dimensions of this container and its technological absoluteness. Therefore is recommended to gradually abandon the use of MP53/12 and MP33/18 containers from nursery production. Further research is needed to eventually define new, modern solutions adapted to production of high-quality seedlings for afforestation of Mediterranean karst area. Without proper soil preparation (ripping in this case) and adequate containers for production of high-quality seedlings it is impossible to successfully afforest Mediterranean karst area.
Key words: Mediterranean karst area, container type, morphological features of seedlings, soil preparation, afforestation success, height growth