DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 1-2/2016 str. 31     <-- 31 -->        PDF

HEAVY METAL CONTENTS AND BIOACCUMULATION POTENTIAL OF SOME WILD EDIBLE MUSHROOMS
SADRŽAJ TEŠKIH METALA I BIOAKUMULACIJSKI POTENCIJAL NEKIH SAMONIKLIH JESTIVIH GLJIVA
Ivan ŠIRIĆ, Ante KASAP, Ivica KOS, Tomislava MARKOTA, Draženko TOMIĆ, Milan POLJAK
Summary
The concentration of Fe, Zn and Cu in ten edible mushrooms in Medvednica Nature Park was determined. The similarity between the studied species was deterimend by cluster analysis based on concentrations of the aforementioned metals in the fruit bodies. The analyses of heavy metals were carried out by X – ray fluorescence spectormetry. The highest concentration of Fe (153.96 mg kg–1) was determined in Tricholoma portentosum, and the highest concentration of Zn (90.60 mg kg–1) was determined in Tricholoma terreum. The highest concentration of Cu was determined in Macrolepiota procera (78.18 mg kg–1). The concentrations of Zn and Cu significantly differed (p<0.05; p<0.001) between examined saprophytic and ectomycorrhizal mushrooms. A considerably higher concentration of the analysed elements was found in the cap than in the stipe for all mushroom species. All mushrooms species were bio-exclusors of Fe in relation to the underlying soils. Cluster analysis performed on the basis of the bioaccumulation of the studied metals revealed great similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.
KEY WORDS: heavy metals, edible mushrooms, bioaccumulation potential, ecology
INTRODUCTION
UVOD
Mushrooms are a distinct group of living organisms of considerable nutritive, pharmaceutical and ecological value. They play a vital role in the majority of ecosystems in the biosphere because they are able to biodegrade the substrate on which they grow. Fruit bodies of mushrooms are appreciated for their chemical (Isildak et al., 2004) and nutritional properties (Manzi et al., 1999) and also for texture and flavour. However, it is known that mushrooms can accumulate high concentrations of heavy metals, toxic metalic elements, metalloids and radio nuclids (Kalač 2001; Vetter 2004; Campos and Tejera, 2009). The content of metallic elements in many mushroom species is considerably higher (Kalač, 2010) than in fruits and vegetables (Turkdogan et al., 2003). However, the mechanism of adsorption is still not known (Campos and Tereja, 2011). Mushroom mycelium is able to accumulate considerably higher concentrations of some heavy metals than substrate on which it develops and lives