DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 1-2/2016 str. 32     <-- 32 -->        PDF

(Campos and Tereja, 2009). The density and depth of the mycelium, which lives in the soil for several months or years, influence the metal content in fruit bodies (Garcia et al., 2009). According to the results of Nikkarinen and Martanen, 2004; Garcia et al., 2009; Aloupi et al., 2012; Petkovšek and Pokorny, 2013., species of mushroom and various environmental factors and soil properties (pH, organic matter, redox potential, type of substrate, geochemistry of substrate, distance from the source of pollution etc.) can affect the metal content in mushrooms. Meanwhile, the relationship between abundance and bioavailability of heavy metals from the substrate is very complex and still not known (Kalač, 2010). However, by calculating the factor of bioconcentration, it is possible to determine the suitability of using mushrooms as bioindicators of environmental pollution (Falandysz et al., 2007).
Mushroom picking is very popular in Central and Southern Europe, as well as in Croatia (Širić et al., 2014). Medvednica Nature Park is located near the largest urban and industrial centre in Croatia, the capital city Zagreb, and there may be increased concentrations of heavy metals in mushrooms. In Medvednica Nature Park, 81 species of mushrooms have been identified to date but there has been no study on their metal contents. The objectives of this study were to (i) determine the iron, zinc and cooper content in wild growing edible mushroom species and the substrate on which they grow, (ii) determine the accumulation capacity (bioconcentration or exclusion) of heavy metals in fruit bodies of mushrooms, (iii) determine the distribution of iron, zinc and cooper in anatomical parts of fruit bodies (cap and stipe), (iv) perform cluster analysis on the mushroom species in relation to their metal content.
MATERIAL AND METHODS
MATERIJAL I METODE
Sampling of mushrooms – Prikupljanje uzoraka gljiva
The study was carried out in area of Nature Park Medvednica in the northwestern part of the Zagreb County, Croatia (Fig 1). The study area is covered with a well-preserved deciduous and mixed forest of Quercus sp., Carpinus betulus L., Castanea sativa Mill., Fagus sylvatica L., Picea abies L., Acer pseudoplatanus L. and Fraxinus excelsior L.. Macrofungal specimens were collected during the autumn of 2012 (from September till December). Levels of heavy metals (Fe, Zn and Cu) were analysed in 10 edible mushroom species (20 samples per species). Among the sampled species, there were four terrestrial saprophytes (Agaricus campestris (L) Fries, Clitocybe inversa (Scop. ex Fr.) Pat., Clitocybe nebularis Batsch. ex Fr. and Macrolepiota procera (Scop. ex Fr.) Sing.), one lignicoluous saprophyte (Armillaria mellea (Vahl. ex Fr.) Karst), and five ectomycorrhizal species (Boletus aestivalis Paulet ex Fries, Boletus edulis Bull. ex Fries, Lactarius deterrimus Groger, Tricholoma portentosum (Fr.) Quelet, Tricholoma terreum (Schff. ex Fr.) Kummer). Completely developed and mature fruit bodies of the investigated mushrooms were collected randomly. At the same time, soil samples of the forest upper soil