DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 1-2/2016 str. 38     <-- 38 -->        PDF

therefore expected its grouping in a cluster with other species of the same ecological affiliation. The results of cluster analysis were finally presented graphically as dendrograms.
CONCLUSIONS
ZAKLJUČCI
Iron, zinc and cooper concentration of 10 mushrooms species collected from Nature Park Medvednica, Croatia were determined. The heavy metal concentrations in the mushrooms are mainly affected by species and their lifestyle. All mushrooms species were bioexclusors of iron. On the other hand, bio-accumulation features in some of the investigated mushroom species for the metals zinc and copper were determined. The average concentrations of the investigated metals between the anatomical parts of the fruit body (cap and stipe) were considerably different. The determined values of analysed elements in mushrooms correspond to levels in unpolluted areas. Based on the determined concentration of metals in mushrooms and soil substrate, it can be concluded that the environment of the investigated area is not contaminated with the analysed elements. The heavy metal levels of wild edible mushrooms and area on which they grow should be analysed more often in order to evaluate the possible danger to human health.
Acknowledgements
The authors wish to express thanks to professor Romano Božac for help in organization and support during the mushrooms collection and identification. Also, a great thanks to professor Franc Pohleven and professor Miha Humar for technical support in analyses of heavy metals.
REFERENCES
LITERATURA
Adriaensen, K., D. van der Lelie, A. van Laere, J. Vangronsveld, J.V. Colpaert 2004: A zinc-adapted fungus protects pines from zinc stress. New Phytol 161, 549–555., Lancaster
Alonso, J., M.A.Garcia, M. Pérez-López, M.J. Melgar, 2003: The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Con Tox 44, 180–188., New York
Aloupi, M., G. Koutrotsios, M. Koulousaris, N. Kalogeropoulos, 2012: Trace metal contents in wild edible mushrooms growing on serprntine and vulcanic soils on the island of Levos, Greece. Ecotox Environ Safe 78, 184–194., San Diego
Borovička, J., Z. Randa, 2007: Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog 6, 249–259., Heidelberg
Campos, J.A., 2011: Nutrients and trace elements content of wood decay fungi isolated from oak (Quercus ilex). Biol Trace Elem Res 144, 1370–1380., Totowa
Campos, J.A., N.A. Tejera, 2009: Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22, 835–841., Dordrecht
Campos, J.A., N.A. Tereja, 2011: Elements bioaccumulation in Sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res 143, 540–554., Totowa
Çayır, A., M. Coşkun, 2010: The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134, 212–219., Totowa
Chang, S.T., K.Y. Chan, 1973: Quantitative and qualitative changes in proteins during morphogenesis of the basidiocarp of Volvariella volvacea. Mycologia 65, 355–364., Lawrence
De Mendiburu F., 2014: agricolae: Statistical Procedures for Agricultural Research. R package version 1.2–1. http://CRAN.R-project.org/package=agricolae
Falandysz, J., A. Frankowska, G. Jarzynska, A. Dryzalowska, K.A. Kojta, D. Zhang, 2011: Survey on composition and bioconcentration potential of 12 metalic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J Environ Sci Heal B 46, 231–246., Philadelphia
Falandysz, J., M. Gucia, A. Mazur, 2007: Content and biconcentration factors of mercury by Parasol Mushrooms Macrolepiota procera. J Environ Sci Heal B 42, 735–740., Philadelphia
Falandysz, J., K. Szymczyk, H. Ichihashi, L. Bielawski, M. Gucia, A. Frankowska, S.I. Yamasaki, 2001: ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18, 503–513., Oxon
García, M.Á., J. Alonso, M.J. Melgar, 2009: Lead in ediblemushrooms. Levels and bioaccumulation factors. J Hazard Mater 167, 777–783., Amsterdam
Hothorn, T., F. Bretz, P. Westfall, 2008: Simultaneous Inference in General Parametric Models. Biometrical Journal 50, 3, 346–363., Malden
Işıldak, Ö., I. Turkekul, M. Elmastas, H.Y. Aboul-Enein, 2007: Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett 40, 1099–1116., Philadelphia
Işıldak, Ö., I. Turkekul, M. Elmastas, M. Tüzen, 2004: Analysis of heavy metals in some wild-grown edible mushrooms from the middle Black Sea region, Turkey. Food Chem 86, 547–552., Oxon
Jarzynska, G., J. Falandysz, 2012: Metallic elements profile of Hazel (Hard) Bolete (Leccinum griseum) mushroom and associated upper soil horizont. Afr J Biotechnol 11, 4588–4594.
Kalač, P., 2001: Areview of edible mushroom radioactivity. Food Chem 75, 29–35., Oxon
Kalač, P., 2010: Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–009. Food Chem 122, 2–15., Oxon
Kojta, A.K., M. Gucia, G. Jarzynska, M. Lewandowska, A. Zakrzewska, J. Falandysz, D. Zhang, 2011: Phosphorus and certain metals in parasol mushrooms (Macrolepiota procera) and soils from the Augustowska forest and Elk region in north-eastern Poland. Fresen Environ Bull 20, 3044–3052., Freising
Malinowska, E., P. Szefer, J. Falandysz, 2004: Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84, 405–416., Oxon
Manzi, P., A. Aguzzi, V. Vivanti, M. Paci, L. Pizzoferrato, 1999: Mushrooms as a source of functional ingredients. In Euro. Food