prilagođeno pretraživanje po punom tekstu

ŠUMARSKI LIST 11-12/2016 str. 38     <-- 38 -->        PDF

(Saracoglu, 1988), beech (Saracoglu, 1998) and oak (Durkaya, 1998). In fitting the biomass equations for Calabrian pine (Durkaya et al., 2009), Scots pine and alder, diameter at breast height (dbh) and tree height (h) were used as independent variables, while in the other biomass equations, only diameter at breast height was used as an explanatory variable. Furthermore, several studies have been carried out to determine the fuel loading capacities of several domestic pine species in Turkey (Kucuk et al., 2007; Kucuk and Bilgili, 2008; Kucuk et al., 2008; Mitsopoulos et al. 2016).
The aim of this study was to develop above-ground biomass equations and to estimate the whole tree biomass and the biomass of different tree components of the Calabrian pine growing in the Mediterranean Region of Turkey.
Study area – Područje istraživanja
The study area comprised the forests of the Mediterranean Region, located in the south of Turkey (Fig. 1) (36°00’-37°30’N, 29°20’-35°00’E). The elevation ranges from 80 to 1114 m above mean sea level. The study area was covered by forest (56%), agricultural (45%), pasture land (23%) and settlement (30%) land use types. The forested lands consist of Calabrian pine (78%), black pine (23%), Lebonan cedar (30), oak species (12%) and oriental beech (2%) stands. The area has a Mediterranean climate with hot and humid summers and rainy, warm winters. The average temperature is 17.7 °C with a min -4.0°C and max 45.0°C temperature. The total annual average precipitation is 1069.8 mm. The main geological main rock is lime stone that producing red-brown Mediterranean soils throughout the area.
Data sampling – Prikupljanje podataka
Pure Calabrian pine stands covering different site classes at different development phases were utilized in order to estimate the above-ground biomass. A total of 292 sample plots representing trees from different growing sites, stand densities, and stand ages were randomly selected. Traits of trees in each circled shape sampling plot ranging from 200 to 2000 m2 were measured. One sample tree representing average basal area within each sampling plot was cut down and the above-ground biomass was separated into stem, branches and needles. The stem was sectioned into one meter apart. A 5 cm wide wood disk from each section was cut for the carbon analysis. The bark thickness and dbh of each section was measured and recorded. The sections were also