DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 11-12/2017 str. 49     <-- 49 -->        PDF

RESULTS AND DISCUSSION
REZULTATI I RASPRAVA
GIS-based S-MCDM was employed as a new approach to produce the forest road route. S-TOPSIS is widely used to solve S-MCDM problems and is proposed by Hwang and Yoon 1981.At this stage, subsequent to determining the weights of the criteria and indices using spatial analysis, the final weight of the routes was calculated using the S-TOPSIS method. GIS based S-MCDM analyses were applied on geodatabase using our case-sensitive extension (FOROR).
The optimal route was created using S-TOPSIS with GIS-based FOROR. ArcGIS 10.3 software was used and an interface was able to identify routes through raster data models for the cost distance-cost path algorithms designed on this software using S-TOPSIS. In this process, all data layers were formed using raster-based standard pixel sizes. The pixel sizes were determined, depending on the scale of the used spatial data, as 30X30 m in order to avoid loss of data. In this study we have determined the weights with a comprehensive survey to academicians, private sector and forest engineering staffs working at similar route determination areas. S-TOPSIS methodology must be started at the second step (the steps of the TOPSIS are given in Section). Thus, weighted normalized decision matrix can be prepared. A pair-wise comparison and normalized weight table are given in Table 1. The weight values shown in Table 1 were multiplied with the data layers and the resulting values were designated as the cost to each layer pixel. At figure 3, some of these geographic layers are shown.
In accordance with these criteria, an Environmentally Sound Forest Road Route (ESFOR) was determined with S-TOPSIS and its advantages as compared to the current forest road route (CFOR) are shown in Table 2.
ESFOR is more effective than conventional methods and can be easily seen at Table 2. ESFOR is advantageous to CFOR when the five criteria considered separately. CFOR and ESFOR routes were also compared with field studies. Advantageous and disadvantageous aspects of the two routes are clearly seen in the visiting area. There was great consistency between analysis results and field observations.
However, the important advantage of this ESFOR is that it is much shorter than the other CFOR and thus has a lower cost. This can be a very important advantage, as road construction is very costly. A cost surface map created (cost) values assigned as resistance in order to determine the environmentally sound of the forest road route in each pixel (Figure 4).
Forest road route with the lowest total construction costs is not always the best solution from an environmental point of view (Liu and Sessions 1993; Dean 1997; Chung and Sessions 2001; Aruga 2005; Akay 2006; Hayati et al. 2013). One of the main factors in forest road route was considering the costs of road construction and maintenance during