DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 11-12/2018 str. 49     <-- 49 -->        PDF

values of total crown biomass, and the relationship between their estimated values and logarithmically converted values are shown in Figure 3. The use of fitting linear models on logtransformed data can cause the results that are biased in geometric rather than arithmetic space (Mascaro et al., 2011). Therefore, it was necessary to perform a logarithmic transformation for variables to account the heteroscedasticity. Systematic biases in estimates for total crown fuel are increasing in this study towards the large diameter trees of the small diameters, especially, trees with > 10 cm diameter are strongly heteroscedastic (Figure 3a). This is indicated for ideal allometry data to show increasing variation in tree biomass with increasing diameter (Chave et al., 2005; Mascaro et al., 2011).
The mean diameter of the trees included in this study was 13.68 cm (s.d. 9.58, mean S.E.E. 1.05). Sixty-seven of the trees had a DBH below 20 cm. The distribution of active fuels in DBH proportions displayed that the biomass of trees with DBH values greater than 10 cm tended to increase with notably greater than trees with smaller DBH values (Figure 4). Foliage mass was the largest component of active fuels, constituting 52.97%, as a mean. We considered it necessary to identify the relationship between the crown ratio (CR=CL/H×100) of the sampled tree and their DBH. As the DBH of the trees increased, we noted that their CRs also began to decrease disproportionately. On the other hand, as the DBH increased, the foliage fuels of the trees began to