DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 1-2/2019 str. 44     <-- 44 -->        PDF

species preferring less insolation, such as Lunaria rediviva, Scopolia carniolica and Cardamine waldsteinii which also require soils rich in humus. In this area F. sylvatica dominates in the tree layer, while A. pseudoplatanus and Corylus avellana occur sporadically. On the northerly exposed slope, F. sylvatica is the most significant tree species along with the rest of the fagetal species, while Abies alba and Sambucus nigra rarely occur in the tree and shrub layer. Similar scenario was registered in the dolines of Trieste karst, where Lausi (1964) observed the replacement of climatogenic association with the new association which is adapted to the intricate mosaics of factors deeper in the dolines, including depth, exposition, continentality, etc.
                Considering the large size of the researched doline, the occurrence of vegetation inversion is in accordance with the work of Bátori (2012), which finds that the vegetation inversion is more pronounced in larger dolines compared to the smaller ones, based on the analysis of 20 dolines in Hungary. The work of Özkan (2010) investigated relationships between the species distribution and slope positions inside 20 dolines in Turkey, and found significant differences in the plant distribution inside dolines, along with high plant variability across short distances, similar to our results.
CONCLUSIONS
ZAKLJUČCI
Different habitat conditions were determined for all the investigated parts of the Sovljak doline caused by the geomorphology and microclimate conditions. Those transitions in habitat conditions between different parts of the doline were reflected in floristic composition, resulting in the gradual change across the examined slopes. Temperature inversion was the dominant characteristic of microclimate of the doline during the research period. While the bottom had the lowest temperature values, the northerly exposed slope had higher, and the southerly exposed slope the highest values. As a consequence of temperature inversion, the results proposed the occurrence of the vegetation inversion in the doline, which is evident from the weakening of thermophilic character of the vegetation towards its bottom. Vegetation inversion suggests that temperature inversion is characteristic phenomenon in the microclimate of the Sovljak doline. Microclimatic measurements in duration of at least a year would be necessary to confirm these findings.
REFERENCES
LITERATURA
Antonić, O., V. Kušan, B., Hrašovec, 1997: Microclimatic and topoclimatic differences between the phytocoenoses in the Viljska Ponikva Sinkhole, Mt. Risnjak, Croatia, Hrvatski meteorološki časopis, 32 (32): 37–49, Zagreb
Bárány-Kevei, I., 2011: Changes in the vegetation of dolines in Aggtelek and Bükk Mountains, Acta Climatologica et Chorologica, 44–45: 25–30, Szeged.
Bátori, Z., J. Csiky, L. Erdös, T. Morschhauser, P. Török, L. Körmöczi, 2009: Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities, Acta Carsologica, 38 (2–3): 237–252, Postojna.
Bátori, Z., R. Gallé, L. Erdös, L. Körmöczi, 2011: Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary), Acta Bot Croat, 70 (2): 147–155, Zagreb.
Bátori Z., L. Körmöczi, L. Erdős, M. Zalatnai, J. Csiky, 2012: Importance of karst sinkholes in preserving relict, mountain and wet woodland plant species under sub-Mediterranean climate: a case study from southern Hungary, J Cave Karst Stud, 74: 127–144, Huntsville.
Bátori, Z., A. Vojtkó, T. Farkas, A. Szabó, K. Havadtői, A. E. Vojtkó, G. Keppel, 2016: Large-and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia, Ann Bot-London, 119(2): 301–309, Oxford.
Bondesan, A., M. Meneghel, U. Sauro, 1992: Morphometric Analysis of Dolines, Int J Speleol, 21(1–4): 1–55, Trieste. Britvec, M., V. Ungar, S. Bogdanović, 2014: Flora Nakovanske visoravni i okolice (poluotok Pelješac), Agronomski glasnik, 1–2: 61–82, Zagreb.
Buzjak, S., 2001: Ekološka i floristička obilježja ulaznih dijelova jama i spilja u kršu Hrvatske, Dissertation, 1–150, PMF, Department of Biology, Zagreb.
Buzjak, N., S. Buzjak, D. Orešić, 2011: Floristic, microclimatic and geomorphological features of collapsed doline Japage on the Žumberak (Croatia), Sum list, 1–2, 127–137, Zagreb.
Cernatič-Gregorič, A., M. Zega, 2010: The impact of human activities on dolines (sinkholes) – typical geomorphologic features on karst (Slovenia) and possibilities of their preservation, Geographica Pannonica, 14 (4): 109–117, Novi Sad.
Domac, R., 1994: Flora Hrvatske: priručnik za određivanje bilja, Školska knjiga, 503 p., Zagreb.
Ellenberg, H., C. Leuschner, 2010: Zeigerwerte der Pflanzen Mitteleuropas, Vegetation Mitteleuropas mit den Alpen, Chapter 27, UTB GmbH, Stuttgart.
Favretto, D., L. Poldini, 1985: The vegetation in the dolinas of the karst region near Trieste (Italy), Studia Geobotanica, 5: 5–15, Trieste.
Ford, D., P. Williams, 2007: Karst hydrogeology and geomorphology, John Wiley & Sons Ltd., 577 p., West Sussex. Gračanin, M., Lj. Ilijanić, 1977: Uvod u ekologiju bilja, Školska knjiga, 318 p., Zagreb.
Horvat, I., 1962: Vegetacija planina zapadne Hrvatske, Prirodoslovna istraživanja ser. Acta Biologica II, 30: 5–173, Zagreb. Horvatić, S., I. Trinajstić, (eds.), 1967 – 1981: Analitička flora Jugoslavije 1, Šumarski fakultet Sveučilišta u Zagrebu, Sveučilišna naklada Liber, 958 p., Zagreb.
Horvatić, S., Lj. Ilijanić, Lj. Marković, 1967–1968: Biljni pokrov okolice Senja, Senjski zbornik, 3: 297–323, Senj.
Jávorka, S., V. Csapody, 1991: Iconographia florae partis Austro-orientalis Europae centralis, Acad. Kiado, 576 p., Budapest (Reprint).
Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World Map of the Köppen-Geiger climate classification updated. Meteorol Z, 15, 259–263, Stuttgart.