prilagođeno pretraživanje po punom tekstu

ŠUMARSKI LIST 7-8/2019 str. 49     <-- 49 -->        PDF

Ermini, L., Catani, F., Casagli, N. 2005: Artificial Neural Networks applied to landslide susceptibility assessment, Geomorphology, 66, 327–343.
Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., Tutubalina, O. 2009: Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology, 109(3-4), 195-212.
Feizizadeh, B., Blaschke, T. 2013: GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128.
Goetz, J. N., Brenning, A., Petschko, H., Leopold, P. 2015: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences, 81, 1–11.
Gorsevski, P. V., Gessler, P. E., Foltz, R. B., Elliot, W. J. 2006: Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395-415.
Hapke, C. J., Green, K. R. 2006: Coastal landslide material loss rates associated with severe climatic events. Geology, 34(12), 1077-1080.
Hong, H., Pradhan, B., Xu, C., Tien Bui, D. 2015: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266–281.
Jaafari, A., Najafi, A., Rezaeian, J., Sattarian, A., Ghajar, I. 2015: Planning road networks in landslide-prone areas: A case study from the northern forests of Iran. Land Use Policy, 47, 198–208.
Jaafari, A., Rezaeian, J., Omrani, M.S., 2017: Spatial Prediction of Slope Failures in Support of Forestry Operations Safety. Croatian Journal of Forest Engineering 38(1): 107-118.
Jacobs, L., Dewitte, O., Poesen, J., Sekajugo, J., Nobile, A., Rossi, M., Kervyn, M. 2018: Field-based landslide susceptibility assessment in a data-scarce environment: The populated areas of the Rwenzori Mountains. Natural Hazards and Earth System Sciences, 18(1), 105–124.
Kavzoglu, T., Colkesen, I., Sahin, E. K. 2019: Machine Learning Techniques in Landslide Susceptibility Mapping: A Survey and a Case Study. In Landslides: Theory, Practice and Modelling (pp. 283-301). Springer, Cham.
Lee, M. J., Park, I., Lee, S., 2015: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea. Environmental Earth Sciences, 74(1), 413-429.
Lee, S., Talib, J. A. 2005: Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982-990.
Lin, L., Lin, Q., Wang, Y. 2017: Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences17(8), 1411-1424.
Lu, S. Y., Lin, C. Y., Hwang, L. S. 2011: Spatial Relationships between Landslides and Topographical Factors at the Liukuei Experimental Forest, Southwestern Taiwan after Typhoon Morakot, 26(4), 399-408.
Martinović, K., Gavin, K., Reale, C. 2016: Development of a landslide susceptibility assessment for a rail network. Engineering Geology, 215, 1-9.
Moore, I. D., Grayson, R. B., Ladson, A. R. 1991: Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes, 5(1), 3-30.
Nefeslioglu, H.A., San, T., Gokceoglu, C., Duman, T.Y., 2012: An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 14 (1), 40–60.
Pantha, B. R., Yatabe, R., Bhandary, N. P. 2008: GIS-based landslide susceptibility zonation for roadside slope repair and maintenance in the Himalayan region. Episodes, 31(4), 384–391.
Petley, D. 2012: Global patterns of loss of life from landslides. Geology, 40(10), 927-930.
Pfeil-McCullough, E., Bain, D. J., Bergman, J., Crumrine, D. 2015: Emerald ash borer and the urban forest: Changes in landslide potential due to canopy loss scenarios in the City of Pittsburgh, PA. Science of the Total Environment, 536, 538-545.
Pham, B. T., Tien Bui, D., Prakash, I., Dholakia, M. B. 2017: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52–63.
Pourghasemi, H. R., Moradi, H. R., Aghda, S. F., Gokceoglu, C., Pradhan, B. 2014: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7(5), 1857-1878.
Pourghasemi, H. R., Yansari, Z. T., Panagos, P., Pradhan, B. 2018: Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arabian Journal of Geosciences, 11(9), 193.
Saha, A. K., Arora, M. K., Gupta, R. P., Virdi, M. L., Csaplovics, E. 2005: GIS-based route planning in landslide-prone areas. International Journal of Geographical Information Science, 19(10), 1149–1175.
Shahabi, H., Khezri, S., Ahmad, B. Bin, Hashim, M. 2014: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55–70.
Steger, S., Brenning, A., Bell, R., Petschko, H., Glade, T. 2016: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology, 262, 8–23.
Tanyaş, H., Van Westen, C. J., Allstadt, K. E., Jessee, M. A. N., Görüm, T., Jibson, R. W., Hovius, N. 2017: Presentation and analysis of a worldwide database of earthquake‐induced landslide inventories. Journal of Geophysical Research: Earth Surface122(10), 1991-2015.
Truong, X., Mitamura, M., Kono, Y., Raghavan, V., Yonezawa, G., Do, T., Lee, S. 2018: Enhancing Prediction Performance of Landslide Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic Model Tree. Applied Sciences8(7), 1046.
Vahidnia, M. H., Alesheikh, A. A., Alimohammadi, A., Hosseinali, F. 2010: A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers and Geosciences, 36(9), 1101–1114.