DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 3-4/2021 str. 28     <-- 28 -->        PDF

Ovakav pristup identifikaciji nestalih i novonastalih šumskih površina jednostavan je za implementaciju te ima niz prednosti u odnosu na tradicionalne terenske metode. Prednosti se ponajprije ogledaju u dostupnosti povijesnih podataka i mogućnosti da se analiziraju nepristupačna područja i velike površine nezavisno od vremenskih uvjeta i vremena akvizicije.
Na osnovi prikazanih rezultata, zaključuje se da klasifikacija SAR snimaka može poslužiti pri identifikaciji nastalih promjena u šumskom pokrovu. Također, uporaba GEE u daljinskim istraživanjima u području šumarstva, bez obzira da li se koriste radarske ili optičke snimke, može se smatrati izuzetno učinkovita i pouzdana. GEE ima primat u odnosu na ostale programe zbog obrade u oblaku koja ne zahtijeva posjedovanje računala s visokim performansama, ali je svakako još uvijek potrebno obaviti kontrolu, kao što je i pokazano kombinacijom vizualne analize i interpretacije satelitskih snimaka.
LITERATURA
REFERENCES
Belgiu, M., O. Csillik, 2018: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sensing Environment, 204: 509–523.
Gavrilović, B., B. Gavrilović, S. Ćurčić, D. Stojanović, D. Savić, 2014: Leaf beetles (Coleoptera: Chrysomelidae) of mt. Fruška gora (Vojvodina province, northern Serbia) with an overview of host plants, Šumarski list, 138 (1-2): 29–41.
Chen, X., S. Liang, Y. Cao, 2017: Sensitivity of summer drying to spring snow-albedo feedback throughout the Northern Hemisphere from satellite observations, IEEE Geoscience Remote Sensing Letters, 14: 2345–2349.
Copernicus: https://www.copernicus.eu/en, (Pristupljeno: 15. 06. 2020.).
Denize, J., Hubert-Moy, L., Betbeder, J., Corgne, S., Baudry, J., Pottier, E, 2019: Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscape,. Remote Sensing, 11: 37-55.
Čortan, D., B. Tubić, M. Šijačić-Nikolić, D. Borota, 2015: Variability of black poplar (Populus nigra l.) leaf morphology in Vojvodina, Serbia. Šumarski list, 139 (5-6): 245-252.
IPCC, 2006: Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, IPCC Guidelines for National Greenhouse Gas Inventories.
Jovanović, D., M. Govedarica, I. Badnjarević, V. Pajić, 2010: Object based image analysis in forestry change detection, IEEE International Symposium On Intelligent Systems And Informatics, Subotica: IEEE.
Jovanović, D., M. Govedarica, I. Badnjarević: 2011: Presenting And Comparing The Object Based Image Analysis and Standard Image Analysis For Change Detection of Forest Areas, Using Low-Resolution Satellite Imagery, The International Multidisciplinary Scientific GeoConference and Expo (Surveying Geology & mining Ecology Management), str. 2, 11, 329-336, Albena, Bulgaria: SGEM.
Li, D., Y. Ke, H. Gong, X. Li, 2015: Object-based urban tree species classification using bi-temporal WORLDView-2 and WORLDView-3 images, Remote Sensing, 7: 16917–16937.
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E, 2019: The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform, Remote Sensing, 11: 1-43.
Millar, C., N, Stephenson, S. Stephens, 2007: Climate change and forests of the future: Managing in the face of uncertainty, Ecological Applications, 17: 2145–2151.
Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, 2003: Good Practice Guidance for Land Use, Land-Use Change and Forestry; Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme (IPCC-NGGIP), Hayama, Japan.
Puletti, N., F. Chianucci, C. Castaldi, 2017: Use of Sentinel-2 for forest classification in Mediterranean environments, Annals of Silvicultural Research, 42 (1).
Reay, D., 2008: Climate change for the masses, Nature, 452(31).
Reiche, J., E. Hamunyela, J. Verbesselt, D. Hoekman, M. Herold, 2018: Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2, Remote Sensing Environment, 204: 147–161.
Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N., Reinartz, P, 2018: Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas, Remote Sensing, 10(8): 1227-1241.
Tsai, Y.H., Stow, D., Chen, H.L., Lewison, R., An, L., Shi, L, 2018: Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine, Remote Sensing, 10(6): 927-941.
Woodwell, G., R. Whittaker, W. Reiners, G. Likens, C. Delwiche, D. Botkin, 1978: The biota and the world carbon budget. Science, 199: 141-146.
Summary
Forest and forest ecosystems have a big importance for the whole living world on the earth. Rapid deforestation poses a great danger and increases the effects of climate change. Large forest areas are cut down every year around the world and these activities need to be closely monitored to reduce their negative impact. Knowledge of valid and current geospatial data on forests and forest areas, obtained by interpreting the data by remote sensing methods has great importance for rapid response and