DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 5-6/2021 str. 83     <-- 83 -->        PDF

Austin, 2010). At sites without mycorrhizal networks and mycorrhizal fungal propagules, survival and growth of seedlings could be reduced and artificial inoculation with mycorrhizal fungi might be helpful. However, advantage should be given to autochthonous species and strains of mycorrhizal fungi (Katanić et al., 2009).
Forest management has an important role in forest stability under unfavourable conditions such as climate change. Forest practices that favour fungal taxa that produce extensive mycorrhizal networks in order to increase soil aggregation and connectivity, or species that produce decay-resistant compounds are very welcome. Under current climate change and loss of biodiversity, close-to nature forestry must be a priority. Furthermore, it is of great importance to harmonize the interests of forestry, agriculture, and environmental protection (Orlović et al., 2014).
Conclusion
Zaključak
Mycorrhizas have an important role in forest ecosystems stability under climate change, by mitigating detrimental effects of different unfavourable factors as increased CO2 in the atmosphere, temperature rise, drought, lack of nutrients, soil acidification, pollutants, pests, diseases, etc. Forest management in the context of climate change should be long term, sustainable, and based on natural principles.
Acknowledgement
The study was financed by project 451-03-68/2020-14/ 200197 of the Ministry of Education, Science and Technological Development of the Republic of Serbia and by the Science Fund of the Republic of Serbia, PROMIS, GRANT No 6066613, MYCOCLIMART.
References
Literatura
Arnolds, E., 1991: Decline of ectomycorrhizal fungi in Europe, Agr Ecosyst Environ  35, 2–3: 209-244.
Avramidou E.V., 2019: Epigenetics vs Genetics: Unravelling the importance beyond the gene in natural forest populations Topola/Poplar, 203:31-35
Bahadur, A., A Batool, F. Nasir, S. Jiang, Q. Mingsen, Q. Zhang. V. Feng, (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants, Int. J. Mol. Sci., 20(17), 4199.
Bellgard, S.E., S. E. Williams, 2011: Response of Mycorrhizal Diversity to Current Climatic Changes, Diversity, 3, 8-90.
Bellion, M., M. Courbot, C. Jacob, D. Blaudez, M. Chalot, 2006: Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi, FEMS Microbiol. Lett, 254: 173-181.
Bojarczuk, K., B. Kieliszewska-Rokicka, 2010: Effect of Ectomycorrhiza on Cu and Pb accumulationin leaves and roots of Silver birch (Betula pendula Roth.) seedlings grown in metal-contaminated soil, Water Air Soil Pollut 207: 227–240.
Champagne, A., M. Boutry, 2016: Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species, Biochim. Biophys. Acta BBA 1864, 1039–1049.
Cudlin, P., B. Kieliszewska-Rokicka, M. Rudawska, T. Grebenc, P. Alberton, T. Lehto, M. R. Akker, I. Børja, B. Konopka, T. Leski, H. Kraigher, T. W. Kuyper, 2007: Fine roots and ectomycorrhizas as indicators of environmental change, Plant. Biosystems 141 (3): 406– 425.
di Pietro, M., J.-L. Churin, J. Garbaye, 2007: Differential ability of ectomycorrhizas to survive drying, Mycorrhiza (2007) 17:547–550.
FAO 2006: Global forest resources assessment 2005. FAO Forestry Paper 147, Rome.
Fester, T., R. Sawers, 2011: Progess and challenges in agricultural applications of arbuscular mycorrhizal fungi, Crit rev plant sci, 30(5), 459-470.
French, K.E., 2017: Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health, Front. Microbiol. 8:1403, 1-8.
Gehring, C.A., R.C. Mueller, T.G. Whitham, 2006: Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods, Oecologia 149, 158–164.
Gehring, C.A., R.L. Swaty, R.J. Deckert, 2017: Mycorrhizas, Drought, and Host-Plant Mortality, Mycorrhizal Mediation of Soil, Elsevier, 279-298, Amsterdam
Hobbie, E.A., R. Agerer (2010): Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types, Plant Soil 327, 71–83.
Houghton, R.A., 1988: The global carbon cycle (letter to the editor). Science 241, 1736
IPCC 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, 151 pp.May 14, 2015
Jung SC, A. Martinez-Medina, J. A. Lopez-Raez, M. J. Pozo, 2012: Mycorrhiza-induced resistance and priming of plant defenses, J Chem Ecol. 38(6):651-664.
Katanić M., 2013: Diversity of mycorrhizal fungi of poplars (Populus spp.) [in Serbian], Dissertation, Faculty of Sciences, Novi Sad
Katanić M., A. Pilipović, B. Kovačević, S. Pekeč, Z. Novčić, 2014: Influence of genotype and environment on poplar roots colonization with mycorrhizal and endophytic fungi, [in Serbian], Topola/Poplar 193/194: 97-107
Katanić M., M. Marković, P. Pap, M. Zlatković, S. Pekeč, B. Kovačević, 2017: Biology and cultivation of truffles in the world and in Serbia [in Serbian], Topola/Poplar, 199/200: 175-190.
Katanić M., S. Orlović, Z. Galić, B. Kovačević, H. Kraigher, 2009: Mycorrhization of poplars (Populus sp.). Topola/Poplar 183/184, 95-113.
Katanić, M., B. Kovačević, N. Glowska, E. Paoletti, S. Vasić, M Matavulj, H. Kraigher, 2013: Colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi [in Serbian], Topola/Poplar 191/192: 17-29.
Katanić, M., S. Orlović, T. Grebenc, B. Kovačević, M. Kebert, M. Matavulj, H. Kraigher, 2015: Mycorrhizal fungal community of poplars growing on pyrite tailings contaminated site near the river Timok, SEEFOR 6 (1):53-63
Katanić, М., E. Paoletti, S. Orlović, T. Grebenc, H. Kraigher, 2014: Mycorrhizal status of an ozone sensitive poplar clone treated with the anti-ozonant ethylenediurea. Eur. J. For. Res, 133: 735-743.