prilagođeno pretraživanje po punom tekstu

ŠUMARSKI LIST 7-8/2022 str. 42     <-- 42 -->        PDF

environmental conditions and adaptation of the species to more stressful environmental conditions will enable better design of breeding programs in order to adapt to projected climate change in the future. As a part of natural population monitoring, evolutionary ecology research of the silver fir needle morphology is the valuable contribution to the comprehension of present genetic variability as a prerequisite for the possibility of adaptation to rapid climate change and conservation of the species area in the Balkan Peninsula. Defining forest response to the spatial environmental changes through the acclimatization abilities of the evergreen conifer trees (for example morphological needles traits) is essential for predicting the survival of these ecosystems.
This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant numbers: 451-03-9/2021-14/200027 and 451-03-9/2021-14/ 200007.
Allen, C.D., A.K., Macalady, H., Chenchouni, D., Bachelet, N., McDowell, M., Vennetier, T., Kizberger, A., Rigling, D.D., Breshears, E.H., Hogg, P., Gonzalez, R., Fensham, Z., Zhang, J., Castro, N., Demidova, J.H., Lim, G., Allard, S.W., Running, A., Semerci, N., Cobb, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 259: 660-684.
Bradshaw R.H., B.H., Holmqvist, S.A., Cowling, M.T., Sykes, 2000: The effects of climate change on the distribution and management of Picea abies in southern Scandinavia. Can J For Res, 30(12): 1992-1998.
De La Torre, A.R., B., Wilhite, D., Puiu, J.B., St Clair, M.W., Crepeau, S.L., Salzberg, D.B., Neale, 2021: Dissecting the Polygenic Basis of Cold Adaptation Using Genome Wide Association of Traits and Environmental Data in Douglas-fir. Genes, 12(1):110.
Dörken, V.M., B., Lepetit, 2018: Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill . (Pinaceae, Coniferales): a combined approach. Plant Cell Environ, 41(7), 1683–1697. doi:10.1111/pce.13213
Ergül Bozkurt, A., K. Coşkunçelebi, S. Terzioglu, 2020: Population variability of Scots pine (Pinus sylvestris L.) in Turkey according to the needle morphology. Sumar List, 148(7-8): 347-354.
Falk W., N., Hempelmann, 2013: Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. Int J Climatol, 2013, 18p.
Girvetz, E. H., C., Zganjar, 2014: Dissecting indices of aridity for assessing the impacts of global climate change. Clim Change,126(3), 469-483.
Griesbauer, H., S.C., DeLong, B., Rogers, V., Foord, 2021: Growth sensitivity to climate varies with soil moisture regime in spruce–fir forests in central British Columbia. Trees, 35(2), 649-669.
Hamann A., T.L., Wang, D., Spittlehouse, T.Q., Murdock, 2013: A comprehensive, highresolution database of historical and projected climate surfaces for Western North America. Bull Am Meteorol Soc, 94:1307-1309.
Hampe, A., R.J., Petit, 2005: Conserving biodiversity under climate change: the rear edge matters. Ecol Lett, 8: 461-467. doi: 10.1111/j.1461-0248.2005.00739.x.
Huang, Y., Mao, J., Chen, Z., Meng, J., Xu, Y., Duan, A. and Li, Y., 2016: Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. J For Res, 27(1), pp.13-25.
Irvine J., M.P., Perks, F., Magnani, J., Grace, 1998: The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol, 18: 393-402.
Jankowski A., T.P., Wyka, R., Żytkowiak, B., Nihlgård, P.B., Reich, J., Oleksyn, 2017: Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900 km temperate–boreal transect. Funct Ecol, 31(12):2212-2223.
Kašpar J., J., Hošek, V., Treml, 2017: How wind affects growth in treeline Picea abies. Alp Bot, 127(2):109-120.
Klančnik K., K., Vogel-Mikuš, A., Gaberščik, 2014: Silicified structures affect leaf optical properties in grasses and sedge. J Photochem Photobiol, B 130: 1-10. doi: 10.1016/j.jphotobiol.2013.10.011
Leimu, R., P., Mutikainen, J., Koricheva, M., Fischer, 2006: How general are positive relationship between plant population size, fitness and genetic variation? J Ecol, 94: 942-952. doi:
Liepelt, S., R., Cheddadi, J.L., de Beaulieu, B., Fady, D., Gömöry, E., Hussendörfer, M., Konnert, T., Litt, R., Longauer, R., Terhürne-Berson, B., Ziegenhagen, 2009: Postglacial range expansion and its genetic imprints in Abies alba Mill. A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol, 153: 139-149. doi: 10.1016/j.revpalbo.2008.07.007.
Lindner, M., M., Maroschek, S., Netherer, A., Kremer, A., Barbati, J., García-Gonzalo, R., Seidl, S., Delzon, P., Corona, M., Kolström, M.J., Lexer, M., Marchetti, 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage, 259: 698-709. doi:10.1016/j.foreco.2009.09.023
Lukeš P., P., Stenberg, M., Rautiainen, M., Mottus, K.M., Vanhatalo, 2013: Optical properties of leaves and needles for boreal tree species in Europe. Remote Sens Lett, 4: 667-676.
M. Ratknić, Z., Miletić, B., Nikolić, 2013: Morpho-anatomical characteristics and content of nutritive macro elements in needles of fir and spruce and their varieties in Serbia. Arch Biol Sci, 65 (4), 1479-1490.
Miljković D., M., Stefanović, S., Orlović, M.S., Neđić, L., Kesić, S., Stojnić, 2019: Wild cherry (Prunus avium (L.) leaf shape and