DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu
ŠUMARSKI LIST 7-8/2023 str. 34 <-- 34 --> PDF |
Svi poznati kriteriji/ograničenja kretnosti šumskih vozila ponajprije su vezani za njihovo kretanje uz nagib terena. Ograničenje kretnosti skidera pri vuči drva niz nagib je čvrsto određeno, dok u literaturi nisu zabilježena ograničenje izvoženja drva forvarderom niz nagib. Granični nagib terena pri izvoženju drva nominalno natovarenog forvardera nizbrdo, kod kojeg obodna sila poprima vrijednost nula nije se pokazao kao dobar pokazatelj ograničenja izvoženja drva. Određivanje ograničenja kretnosti forvardera pri izvoženju drva niz nagib terena u budućnosti će predstavljati istraživački izazov. Zahvala – Acknowledgement Istraživanje je provedeno u sklopu projekta »Očuvanje sastojina poljskog jasena (Fraxinus angustifolia Vahl) u Republici Hrvatskoj s naglaskom na biotske štetne čimbenike« koji financira Ministarstvo poljoprivrede Republike Hrvatske iz sredstava naknade za korištenje općekorisnih funkcija šuma (OKFŠ) za financiranje znanstvenog rada iz područja šumarstva. 6. Literatura References Borz, S.A., M.V., Marcu, M.F., Cataldo, 2021: Evaluation of an HSM 208F 14 tone HVT-R2 Forwarder Prototype under Conditions of Steep-Terrain Low-Access Forests. Croat. j. for. eng. 42(2): 185–200. https://doi.org/10.5552/crojfe.2021.775 Brixius, W.W., 1987: Traction prediction equations for bias ply tires. ASAE Paper No. 87–1622: 1–31. Bygden, G., 2012: GIS for Operative Support. In: Global Perspectives on Sustainable Forest Management (ed: C.A. Okia), In Tech, 217–222. Bumber, Z., A., Ðuka, Z., Pandur, T., Poršinsky, 2023: Gradeability of a Forwarder Based on Traction Performance. Forests 14(1): 103. https://doi.org/10.3390/f14010103 Cavalli, R., Dž., Amishev, 2019: Steep terrain forest operations – challenges, technology development, current implementation, and future opportunities. Int. J. For. Eng. 30(3): 175–181. https://doi.org/10.1080/14942119.2019.1603030 Đuka, A., T., Pentek, D., Horvat, T., Poršinsky, 2016: Modelling of Downhill Timber Skidding: Bigger Load – Bigger Slope. Croat. j. for. eng. 37(1): 139–150. Đuka, A., S., Grigolato, I., Papa, T., Pentek, T., Poršinsky, 2017: Assessment of timber extraction distance and skid road network in steep karst terrain. iForest Biogeosci. For. 10: 886–894. http://dx.doi.org/10.3832/ifor2471-010 Đuka, A., T., Poršinsky, T., Pentek, Z., Pandur, D., Vusić, I., Papa, 2018A: Mobility Range of a Cable Skidder for Timber Extraction on Sloped Terrain. Forests 9(9): 526. https:/doi.org/10.3390/f9090526 Đuka, A., T., Poršinsky, T., Pentek, Z., Pandur, D., Janeš, I., Papa, 2018B: Soil Measurements in the Context of Planning Harvesting Operations and Variable Climatic Conditions. South-east Eur. For. 9(1): 61–71. https://doi.org/10.15177/seefor.18-04 Đuka, A., Z., Bumber, T., Poršinsky, I., Papa, T., Pentek, T., 2021: The Influence of Increased Salvage Felling on Forwarding Distance and the Removal – A Case Study from Croatia. Forests 12(1): 7. https://dx.doi.org/10.3390/f12010007 Eichrodt, A.W., 2003: Development of a Spatial Trafficability Evaluation System. PhD Thesis, ETH Zurich, 1–165. Edlund, B., O., Lindroos, T., Nordfjell, 2020: The effect of rollover protection systems and trailers on quad bike stability. Int. J. For. Eng. 31(2): 95–105. https://doi.org/ 10.1080/14942119.2020.1708067 Elwaleed, A.K., A., Yahya, M., Zohadie, D., Ahmad, A.F., Kheiralla, 2006: Net traction ratio prediction for high-lug agricultural tyre. J. Terramech. 43(2): 119–139. https://doi.org/10.1016/j.jterra.2004.10.002 Fabbri, A., G., Molari, 2004: Static measurement of the centre of gravity height on narrow-track agricultural tractors. Biosyst. Eng. 87(3): 299–304. https://doi.org/10.1016/j.biosystemseng.2003.12.008 Hittenbeck, J., 2013: Estimation of Trafficable Grades from Traction Performance of a Forwarder. Croat. j. for. eng. 34(1): 71–81. Holzfeind, T., K., Stampfer, F., Holzleitner, 2018: Productivity, setup time and costs of a winch-assisted forwarder. J. For. Res. 23(4): 196–203. https://doi.org/10.1080/13416979.2018.1483131 Holzfeind, T., R., Visser, W., Chung, F., Holzleitner, G., Erber, 2020: Development and Benefits of Winch-Assist Harvesting. Curr. For. Rep. 6: 201–209. https://doi.org/10.1007/s40725-020-00121-8 Horvat, D., 1993: Prilog poznavanju dinamike bogie sustava kotača (A Contribution to comprehension of the bogie wheel system dynamics). Meh. šumar. 18(3): 107–120. ISO 10392, 2011: Road vehicles Determination of centre of gravity. International Standard Organization, Geneva, Switzerland. ISO 13860, 2016: Machinery for forestry – Forwarders – Terms, definitions and commercial specifications. International Standard Organization, Geneva, Switzerland. ISO 789-6, 2019: Agricultural tractors – Test procedures – Part 6: Centre of gravity. International Standard Organization, Geneva, Switzerland. ISO 16231-2, 2015: Self-propelled agricultural machinery – Assessment of stability – Part 2: Determination of static stability and test procedures. International Standard Organization, Geneva, Switzerland. Janeš, D., A., Đuka, I., Papa, T., Pentek, M., Moro, I., Žarković, T., Poršinsky, T., 2022: Pokazatelji primarne otvorenosti četiri reljefna područja šuma (Indicators of Primary Forest Accessibility in Different Terrain Categories). Šum. list 146 (3–4): 103–116. https://doi.org/10.31298/sl.146.3-4.1 Khorsandi, F., P.D., Ayers, R.S., Freeland, X., Wang, 2018: Modeling the effect of liquid movement on the center of gravity calculation of agricultural vehicles. J. Terramech. 75: 37–48. https://doi.org/10.1016/j.jterra.2017.09.005 Kormanek, M., J., Dvořák, 2022: Use of Impact Penetrometer to Determine Changes in Soil Compactness After Entracon Sioux EH30 Timber Harvesting. Croat. j. for. eng. 43(2): 325–337. https://doi.org/10.5552/crojfe.2022.1054 |