ESTIMATION OF SHORT ROTATION CROPS POTENTIAL IN THE REPUBLIC OF CROATIA: ILLUSTRATION CASE WITHIN FP7 PROJECT BIOMASS ENERGY EUROPE

PROCJENA POTENCIJALA BRZORASTUĆIH NASADA U REPUBLICI HRVATSKOJ: PRIMJER RAZULTATA U SKLOPU FP7 PROJEKTA BIOMASS ENERGY EUROPE

Davorin KAJBA*, Julije DOMAC**, Velimir ŠEGON**

SUMMARY: The overall objective of the FP7 Biomass Energy Europe – BEE project is to improve the accuracy and comparability of future biomass resource assessments for energy by reducing heterogeneity, increasing harmonisation and exchanging knowledge. One of the main results within the project is the development of the Methods Handbook for biomass potential assessment, which contains detailed description of the proposed methodology based on type of biomass and type of analysis (statistical, spatially explicit, integrated and others).

The main objective of the Illustration case for Croatia performed within the BEE project is to estimate the energy and technical potential of fast-growing broadleaved species energy plantations on abandoned land or on land where agricultural production is not profitable. The methodology utilised is based on the BEE Methods Handbook. The main source of data used is contained within the Basic pedological map of the Republic Croatia, which forms the basis for the estimation of soil suitability for any kind of designated utilization.

The theoretical potential for short rotation energy crops production in Croatia was estimated as following:

- Forest area suitable for energy crops a total of 51 200 ha was estimated to be suitable for SRC, producing in total 470 200 t DM/y or 8,7 PJ
- Agricultural areas with moderately suitable soils and limited soil suitability a total of 617 000 ha was estimated to be suitable for SRC, producing a total of 7 404 000 t DM/y or 136,2 PJ

The technical potential for short rotation energy crops production in Croatia was estimated as following:

- Forest area suitable for energy crops a total of 46 850 ha was estimated to be suitable for SRC, producing in total 430 000 t DM/y or 7,9 PJ
- Agricultural areas with moderately suitable soils and limited soil suitability a total of 235 650 ha was estimated to be suitable for SRC, producing a total of 2 827 800 t DM/y or 52,1 PJ

In spite of the considerable potential for short rotation energy crops production, currently a very small amount of the available area is utilised in

Sjeverozapadne Hrvatske, Andrije Žaje 10, Zagreb

<sup>Prof. dr. sc. Davorin Kajba, Šumarski fakultet, Svetošimunska 25, Zagreb
Dr. sc. Julije Domac, mr. sc. Velimir Šegon, Regionalna energetska agencija</sup>

Croatia. The issues and problems to be addressed in order to increase this production include a change in policy approach, especially aimed at small landowners, introduction of incentives and subsidies, lack of knowledge and experience in growing energy crops and generally a lack of cooperation between relevant stakeholders.

Key words: biomass potential assessment, Biomass Energy Europe, short rotation crops

INTRODUCTION - Uvod

The main objective of the illustration case for Croatia is to estimate the energy and technical potential of fast-growing broadleaved species energy plantations on abandoned land or on land where agricultural production is not profitable, with a special emphasis on willows as a typical energy crop in South-East Europe.

The patterns of energy crop production and consumption, and their associated social, economic and environmental impacts, are site-specific. Broad generalisations about the energy crop's situation and impacts across regions, or even within the same country, have often resulted in misleading conclusions, poor planning and ineffective implementation. Adequately assessing the implications of the current patterns of energy crop production and use, and the sustainable potential of that resource, requires a holistic view and a good knowledge of the spatial patterns of woodfuel supply and demand. There is a need to conduct spatial analyses of woodfuel supply and demand that are able to articulate the local heterogeneity at the regional and European levels. There is a critical lack of studies providing fullcountry coverage and based on a consistent integration of data at lower geographical scales in Croatia, but also in the whole Western Balkan region.

Looking at the achievements regarding energy crops utilisation in Croatia, the most important ones are related to the research and investigation of productivity of various types of crops. Specifically, clonal tests of short rotation crops were established in different regions in Croatia and the goal was to determine the potential of biomass production of selected willow clones in short

rotations of 2 years, on the site not favourable for growing more valuable species of forest trees (Kajba et al. 1998, Kajba 1999, Bogdan et al, 2006). The production of biomass per hectare was estimated in regard to the clones, mean dry biomass of shoots, survival, spacing, and the average number of shoots per stump.

A number of clones capable of starting initial production cultures are currently available; however, in order for biomass production in short rotations to be recognized as a useful and cost-effective form of providing energy supplies, a lot of work remains to be done in many areas, not least in the area of plant improvement. The aim of these field experiments is to select the clones of the max. production potential with the stem quality, and those poplar and willow clones which will give the satisfactory production on the so called atypical habitats for poplar and willow silviculture (e.i. the oak and ash habitats) and which can come in useful for the establishment of pre-cultivation for the purpose of easier reforestation of common oak and narrowleaved ash. There are relatively many atypical habitats for the cultivation of poplar and especially stemlike willow silviculture in the area of the Sava river.

For the purpose of greater productivity, after the each rotation, shoots should be reduced to one or two per stump. Research should be continued in the direction identification and selection of a greater number of clones with specific adaptability to unfavourable sites, and the production of biomass on marginal sites could be significantly increased with the application of more intense growth (agricultural treatments) and protection measures.

MATERIAL AND METHODS - Materijal i metode

The methodology utilised for the purpose of estimating the SRC potential within this illustration case is based on the BEE Methods Handbook (Vis 2011), specifically in reference to chapter 4.3. (*Energy crops-basic and advanced spatially explicit method*). According to the terminology introduced in the Handbook, the methodology for this illustration case corresponds to the basic spatially explicit method, whereas the methodology was selected mostly based on the available data required to apply it.

The main source of data used is contained within the Basic pedological map of the Republic Croatia. The map

was created as a result of the project coordinated by the Ministry of Science and Technology which lasted from 1985 to 1996 and forms the basis for the estimation of soil suitability for any kind of designated utilization.

Based on the different types of soils, the current utilisation and their characteristics (percentage of rocks and stone, inclination, ecological depth of soil, dreined soil, dominant mode of moistering, etc.) the total area suitable for the production of energy crops was estimated. This area was further reduced based on the information available regarding the implementation of the EU Natura 2000 network in Croatia, and thus ob-

taining the available area relevant to the theoretical potential.

In order to obtain the technical potential the available area for SRC was further reduced after taking into account that certain parts of the land are not suitable to the currently available harvesting mechanisation. These

land parts include areas near alluvial river banks and deposits, areas near floody rivers, swampy areas and areas with a steep inclination.

Taking into account the different productivities of different soil types, the costs of production in terms of monetary units per tonne was estimated.

POTENTIAL FOR BIOMASS - Potencijal biomase

Available areas for SRC cultivation – Raspoložive površine za brzorastuće nasade

Of the total continental land area of Croatia (5 662 031 ha) agricultural land covers 2 955 728 ha or 52.2. %. Permanently unsuitable land for agricultural production in Croatia amounts to 806 648 ha.

This land could be used for the establishment of forest plantations and also bioenergy could be produced. The main data aggregated for the whole of Croatia are shown in Tables 1 and 2.

Table 1 Total area in Croatia, area of pedological soil classification in agriculture, forested area and settled area (Tomić et al. 2008)

Tablica 1. Ukupna površina Hrvatske, površina poljoprivrednog zemljišta, šumskog zemljišta i naseljenog dijela (Tomić et al. 2008)

Area – Površina	1000 ha	% of total area	% of agricultural area	
Alea – Fovisina		% ukupne površine	% poljoprivrednog zemljišta	
Total area in Croatia – <i>Ukupna površina Hrvatske</i>	5 662.0	100.0		
Forested area – Površina pod šumom	2 608.4	46.1		
Area under water – Površina pod vodom	53.4	0.9		
Settled area – Naseljena područja	44.6	0.8		
Agricultural area – Poljoprivredna područja	2 955.7	52.2	100.00	
Automorphous soils – Automorfna tla	1 502.1		50.82	
Hydromorphous soils – Hidromorfna tla	1 087.9		36.81	
Halomorphous soils – Halomorfna tla	0.4		0.01	
Subaqual soils – Subakvalna tla	0.3		0.01	
Rocky soils – Kamenita tla	365.0		12.35	

Table 2 Suitability of agricultural area (soil) for the growth of agrocultures (ha) *Tablica 2. Pogodnost poljoprivrednog zemljišta (tla) za uzgoj poljoprivrednih kultura (ha)*

Area with	Area with moderately	Area with limited	Area with temporarily	Area with permanently	Total agricultural
suitable soils	suitable soils	soil suitability	unsuitable soils	unsuitable soils	area (soil)
Površina	Površina umjereno	Površina	Površina privremeno	Površina trajno	Ukupna površina
pogodnog	pogodnog zemljišta	ograničeno	nepogodnog zemljišta	nepogodnog zemljišta	poljoprivrednog
zemljišta		pogodnog zemljišta			zemljišta
605 739	468 420	463 597	611 324	806 648	2 955 728

Annual reforestation corresponds to 350 to 400 ha of poplar and 20 ha of willow plantation/cultures is stable in last decade (not increase or decrease). The important fact for this production is that 78 % of the forest area in Croatia is owned by the state, and concerning poplar and willow plantations, this percentage is a little bit lower and amounts to 66 %. The existence of the so called 'marginal' land, which is not suitable for agricultural production, either privately or state owned, presents the potential for further development and increase of the production, which is nowadays reduced mainly to reforestation of the new plantations.

Croatia possesses 2 688 687 ha of forest and forest land with 397 963 000 m³ of growing stock which increments annually by 10 526 000 m³. The annual allowable cut is 6 564 000 m³ of gross volume. Of the total

annual cut about 40 % or 2 625 600 m³ of timber is used for processing, 20 % or 1 312 800 m³ for of fuelwood and the remaining 40 % or 2 625 000 is left in the forest as waste. Of this residue 62.5 % or 1 641 000 m³ could be used for bioenergy production, while 37 % or 984 000 m³ would remain in the forest as waste. If this amount suitable for bioenergy is added to the quantity of 1 312 800 m³ of fuelwood, the total quantity of energy wood that could already be placed on the energy market amounts to 2 953 800 m³, which is 45 % of total annual cut. The aggregated data for Croatia is shown in Table 3.

As indicated in the methodology description, the basis for the estimation of available area suitable for energy crops production is the Basic pedological map of the Republic of Croatia (Bogunović 1995–1997).

Table 3 Total area of forest and forest lands in Croatia

Tablica 3. Ukupna površina šuma i šumskog zemljišta u Hrvatskoj

Forest area and forest land (ha) – Šume i šumsko zemljište (ha)								
		Unstocked forest land						
	Stocked forests	Bez šumskog pokrova		Unfertile forest land	Total			
	Pod šumom	Suitable for forests	Unsuitable for forest	Neplodno šumsko zemljište	Ukupno			
		Prikladno za šumu	Neprikladno za šumu					
Managed forests	2 168 874	181 658	27 037	38 536	2 416 105			
Gospodarske šume	2 100 0 / 4	101 030	2/03/	38 330	2 410 103			
Protective forests	130 630	18 781	1 503	3 623	154 537			
Zaštitne šuma	130 030	10 /01	1 303	3 023	134 337			
Forests of special								
assignament	103 278	8 026	4.410	2 326	118 040			
Šume posebne	103 2 / 8	8 026	4 410	2 320	118 040			
namjene								
Total – Ukupno	2 402 782	208 465	32 950	44 485	2 688 682			

The data within the map are available in database as well as GIS format and Figure 1 shows the visual representa-

tion of the data for the whole of Croatia. Different soil types are indicated by different colors and the map in-

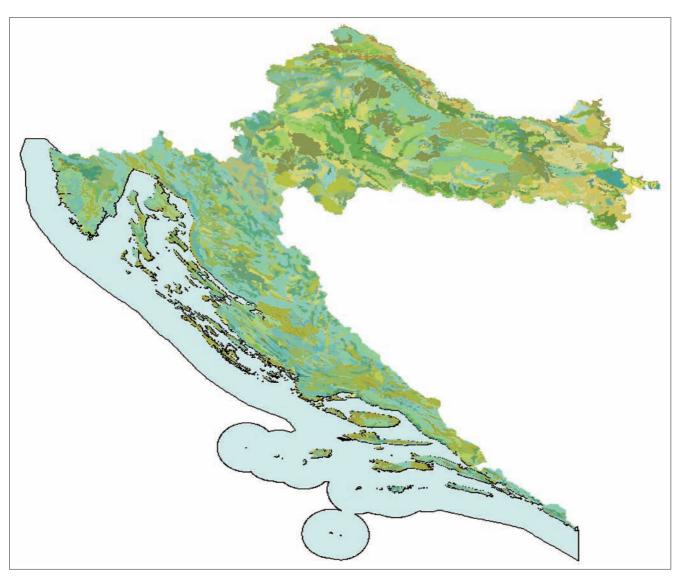


Figure 1 Basic pedological map of the Republic of Croatia (Bogunović 1995–1997)

Slika 1. Osnovna pedološka karta Republike Hrvatske

cludes a total of 65 soil types based on current utilisation and soil characteristics.

After taking into account the current land utilisation and eliminating the land which is already used for agricultural purposes as well as forested land, the following results regarding the maximum land availability in Croatia are obtained:

Estimation of potential – Procjena potencijala

suitability)

Theoretical potential – Teoretski potencijal

Based on pedological study of agricultural areas, specialized pedological maps of the Republic of Croatia and a hydropedological map were constructed which designate potential areas for the cultivation of agricultures. The Croatian agricultural sector also offers potential possibilities for renewable energy production through biofuel production in uncultivated areas. A part of the areas with temporarily unsuitable soils (611 324 ha) and areas with permanently unsuitable soils (806 648 ha) could be used for the establishment of short rotation cultures of forest tree species in the period of 15 years at most.

Taking into account the various soil characteristics which define limiting factors for energy crops production, the available area is further reduced. This area is then used in order to obtain the theoretical potential for energy crops cultivation in Croatia.

The main results can be summarized as follows:

- Forest area suitable for energy crops out of the maximum of 180 000 ha (uncovered forest land), a total of 51 200 ha was estimated to be suitable for SRC
- Agricultural areas with moderately suitable soils and limited soil suitability – out of the maximum of 900 000 ha a total of 617 100 ha was estimated to be suitable for SRC.

Of the total forest area suitable for energy crops, about 31 000 ha are heavy hydromorphous clay type of soils and 20,200 ha are slightly better clay type of soil. Therefore, the production of about 8 t DM per ha*y¹ on average can be expected in the area of 31 000 ha, with this average rising to 11 t DM per ha*y¹ in better sites. Although some tested clones show the production higher than 20 t DM per ha*y¹, it is more realistic to expect the average production mentioned (K a j b a et al. 1998, 1999a, 1999b, 2004, 2007a, 2007b, K a j b a 2009). This estimate does not envisage the use of any intensive agrotechnical measures (additional nutrition during the first two-year rotation cycles, pest control, and others).

Forest area suitable for energy crops – maximum of

approximately 180 000 ha (unstocked forest land,

Agricultural areas with moderately suitable soils

and limited soil suitability - maximum of approxi-

mately 900 000 ha (see Table 2, area with moder-

ately suitable soil and area with limited soil

suitable for forests, see Table 3)

On average, based on the testing and research conducted in Croatia described within the previous chapters, with six rotations (six cutting operations executed two years apart) a maximum average production of 12 t DM per ha/y can be expected on the agricultural area with moderately suitable soils and limited soil suitability.

Taking into account the limitations and mentioned values, the total yield corresponding to the theoretical potential amounts to 7 874 200 t DM/y. Applying the standard energy content for willow wood of 18.4 MJ/kg DM (FAO 2004) this translates into 144.9 PJ/y.

Technical potential – Tehnički potencijal

The estimation of the technical potential is based on the theoretical potential presented in the previous chapter, while taking in consideration the status and limitations of technology for harvesting energy crops which can be applied in Croatia. These considerations are mainly derived from the type of soil and terrain as in certain cases the terrain configuration and soil type practically limit and or prohibit the use of harvesting machinery. Specifically, the following areas were identified as unsuitable for harvesting short rotation crops in Croatia:

- areas within or in the vicinity of alluvial deposits near the main Croatian rivers and their confluents;
- areas within parts of Posavina, Podravina and Pokuplje (swampy areas near rivers Sava, Drava and Kupa);

 areas within parts of Dalmacija, Istra, Gorski kotar and Lika (partly mountain areas with too steep inclination for effective harvesting).

Even though Croatia is not yet a member of the European Union, its Nature protection act has already implemented many mechanisms that transpose the EU Habitats Directive provisions in regards to naturally pretected areas. Specifically, Croatia will have to propose sites for the Natura 2000 Network for over 250 species and 70 habitat types that occur in Croatia. Up to now around 1000 possible sites have been identified which have been put out to public consultation.

After taking into account the location and area of the Natura 2000 sites, as well as the areas unsuitable for harvesting, and deducing it from the numbers presented in the previous chapter, the following area remains in regards to the technical potential for energy crops in Croatia:

- Forest area suitable for energy crops: 46 850 ha
- Agricultural area with moderately suitable soils and limited soil suitability: 235 650 ha

Of the total forest area, about 28 450 ha are heavy hydromorphous clay type of soils and 18 400 ha are slightly better clay type of soil. The production of about 8 t DM per ha*y¹¹ on average can be expected on

the first type of soils, with this average rising to 11 t DM per ha*y¹ in better sites.

A maximum average production of 12 t DM per ha/y can be expected on the agricultural area with moderately suitable soils and limited soil suitability.

Taking into account the mentioned values, the total yield corresponding to the theoretical potential amounts to 3 257 800 t DM/y. Applying the standard energy content for willow wood of 18.4 MJ/kg DM this translates into 60 PJ/y.

Economic indicators (costs of production) – *Ekonomski pokazatelji (troškovi proizvodnje)*

There are some economical studies about energy crops profitability, based on experimental field cultivation of 1-50 ha in the eastern regions of Europe, but not fully operated in a commercial way. Those studies present establishment cost of 1500-2500 for willow and some studies seem to overestimate incomes because of possible yields of > 20 DM per ha*y¹. Today, costs for the short rotation coppice willow are in range of 4.3 to 5.8 ϵ /GJ, depending on the region. For comparison, costs for straw and forest residues are between 2.4 ϵ /GJ and 5 ϵ /GJ. For the future, it can be expected that biomass costs will equalize throughout Europe and drop to about 3.5 ϵ /GJ to 4 ϵ /GJ free plant gate.

According to the tariff system of *Hrvatske Šume* d.o.o. (Croatian Forests Ltd), the cost of establishing one ha of a short rotation willow coppice (9000 ps/ha) is about 30 000 kuna/ha (4 000 €). Research to date has confirmed that these crops are the most suitable for production and cultivation in heavier types of hydromorphic soils. The above sum includes the cost of soil preparation (ploughing and disc-harrowing), the price of seedlings (cuttings) and two tending operations during the first year of the establishment of the culture. Additional tending costs are estimated at 18 000 kn/ha (2 400 €). These costs include 20 wages for hilling and two between-the-row rotations with mechanization. The total cost of establishing and cultivating one hectare of SRC is thus estimated at 48 000 kn (6 400 €). On average, with six rotations (six cutting operations executed two years apart) and with an average production of 12 t DM per ha*y-1, the overall production for a 12-year period is estimated at 144 t DM per ha*. The

average annual sequestration of 15 t CO_2 ha⁻¹ in the same period amounts to 144 t CO_2 ha⁻¹ in all.

The calculation for short rotation coppices of willow clones over the 12 production years is as follows:

- Total establishment and maintenance costs of one ha SRC = $48\,000 \text{ kn}$ (6 400 €),
- A total of 144 t DM per ha* will be produced,
- The cost of produced biomass is 48,000 kn / 144 t = 333 kn (i.e. $45.6 \in /t$)
- The total quantity of sequestered CO₂ emissions is estimated at 144 t CO₂/ha

It is important to point out that, contrary to some neighbouring countries, and due to the lack of stimulating measures of the state, plantation afforestation is still restricted mainly to the state owned land.

Certain measures of state policy on the use of land, as well as the fiscal and incentive measures (tax exemption, credit, provision of plant material and technology support) could help poplar and willow cultivation on privately owned marginal land. These processes, to a lesser degree, are initially present, but on the local level.

The calculation of a SRC establishment does not include support by the Ministry. Unlike Croatia, support in the form of exemption from land taxes for the period of 15 years is a common practice in the EU countries. Costs of establishing and maintaining 1 ha by a private farmer would be much lower compared to the cost of Croatian Forests Ltd due to the use of the farmer's own modified agricultural mechanization and labour force.

ANALYSIS AND DISCUSSION – Analiza i diskusija

Data gaps and methodological challenges – Nedostaci u podacima i primjene metodologije

The methodology and data utilisation/requirements for the estimated theoretical and technical potential for short rotation crops in Croatia are based on the Basic pedological map of the Republic of Croatia, which was created as a result of the project coordinated by the Ministry of Science and Technology which lasted from

Nedostaci u podacima i primjene metodologije 1985 to 1996. In that regard the following can be concluded regarding the adequacy of used data:

 The Basic pedological map of Croatia was developed in 1996, and while it is a fact that soil type changes are rather slow and take many years, a data update is considered necessary; 2. The GIS format (spatial unit) of the data available within the Basic pedological map of Croatia is an old format and is not compatible with other GIS data for Croatia. Specifically, the basic spatial unit used in most cases for GIS modelling in Croatia is the level of municipalities (550 entries for Croatia) or settlements (6736 entries). An example of such modelling is the application of the WISDOM methodology and tool (developed by FAO) to Croatia, which contains detailed data on the supply and demand of forest biomass (Domac and Trossero

2004). On the contrary, the Basic pedological map of Croatia uses spatial units according to land types, thus it is not possible to directly include and apply the information within the pedological map in other GIS data.

However, the update and harmonisation of the Basic pedological map of Croatia represents an extensive work and is not within scope of BEE project, but this update is potentially interesting for possible future projects.

Current status of biomass and energy crops utilisation in Croatia

Trenutno stanje iskorištavanja brzorastućih nasada u Hrvatskoj

Energy production from biomass, except for fuelwood and wood-processing industry waste, has not been used in a larger scale so far in Croatia. By establishment of intensive plantations of fast-growing broadleaved forest tree species on lands that are abandoned or where agricultural production is not profitable, which in Croatia are estimated to cover approximately 50 000 ha, it is possible to start solving global but also many local problems in a positive direction. The soft broadleaved species plantations in short rotations can be established as energy plantations (biomass production for energy, biomass dry matter, biochemical and thermochemical biomass conversion, plantations for wood chips and pulpwood production). These endeavours are in line with both the world trends for better utilisation of energy sources and the biomass energy utilisation strategy of the national energy programme BIOEN (Domac et al., 1998, 2001, 2004). Additional benefits could be numerous socio-economic positive aspects of bioenergy plantations and biomass use (employment, additional income, increase of economic activity, rural diversification and others).

The current status of short rotation crops in Croatia is still at an early development phase. As described in the introduction, considerable research activities have been undertaken by relevant institutions (Faculty of Forestry University of Zagreb, Forestry Institute and others) with the main objective to find genotypes

which, with minimum nutrients, will produce the maximum quantity of biomass. This involves selecting, by means of the research, the most productive clone, giving maximum biomass production, and, thus, ensuring its participation in the primary energy consumption as well as in other forms of utilising the biomass of fast-growing forest trees. According to the results of the field and laboratory research, the genetic differentiation of tested clones with respect to biomass production in fresh and dry matter has been determined.

The multiclonic approach in poplar and willow plantations is being practiced in the Republic of Croatia. The clone arrangement is mosaic. For the purpose of the exact identification of single clones in the nursery reproduction, as well as in the planting on the ground, the plans are being kept. All the poplar and willow selected clones are entered into the live archives in order to preserve the selected material through the 'ex situ' method, and for the indentification of particular clones.

The selection of the arborescent willows (*Salix* sp.) has been carried out in the natural populations on the area of Croatia. The plant breeding was done in the intra- and interspecies species hybridization. Establishing of the SRC plantations in short rotations can be established as biomass production for energy, biomass dry matter, biochemical and thermochemical biomass conversion, plantations for wood chips and pulpwood production.

Sustainability issues in Croatia – Aspekti održivosti u Hrvatskoj

The main sustainability issues regarding short rotation energy crops utilisation in Croatia are related to environmental considerations, specifically the Natura 2000. As described in the chapter Technical potential these issues have been taken into consideration when assessing the technical potential for energy crops in Croatia.

Other sustainability issues, especially regarding socio-economic sustainability, were not possible to be included in the short energy crops potential assessment. The BEE Methods Handbook (Vis 2011) pro-

vides detailed explanations and illustrations on the issues and difficulties in including socio-economic sustainability parameters in biomass potential assessment. In essence, the main problem lies in the fact that social issues are not possible to be defined and quantified without taking into account the local context, i.e. without obtaining feedback from local stakeholders.

CONCLUSIONS AND RECOMMENDATIONS – Zaključci i preporuke

This illustration case presents the results of the analysis of energy potential of fast-growing broadleaved species plantations in Croatia. The methodology used for the analysis is based on the BEE Methods Handbook and corresponds to the basic spatially explicit method, which was chosen based on the availability of the data required for its application.

The main source of data used for the analysis is contained within the Basic pedological map of the Republic Croatia, created as a result of the project coordinated by the Ministry of Science and Technology. The determination of the available area for short rotation crops production is based on taking into account the current land utilisation and eliminating the land which is already used for agricultural purposes as well as forested land.

Taking into account the various soil characteristics which define limiting factors for energy crops production the theoretical potential for short rotation energy crops production in Croatia was estimated as following:

- Forest area suitable for energy crops a total of 51 200 ha was estimated to be suitable for SRC, producing in total 470 200 t DM/y or 8,7 PJ
- Agricultural areas with moderately suitable soils and limited soil suitability – a total of 617 000 ha was estimated to be suitable for SRC, producing a total of 7 404 000 t DM/y or 136,2 PJ

Taking into account the location and area of the Natura 2000 sites, as well as the areas unsuitable for harvesting due to various reasons, the technical poten-

tial for short rotation energy crops production in Croatia was estimated as following:

- Forest area suitable for energy crops a total of 46 850 ha was estimated to be suitable for SRC, producing in total 430 000 t DM/y or 7,9 PJ
- Agricultural areas with moderately suitable soils and limited soil suitability – a total of 235 650 ha was estimated to be suitable for SRC, producing a total of 2 827 800 t DM/y or 52,1 PJ

In spite of the considerable potential for short rotation energy crops production, currently a very small amount of the available area is utilised in Croatia, as presented in chapter 5. The issues and problems to be addressed in order to increase this production include a change in policy approach, especially aimed at small landowners, introduction of incentives and subsidies, lack of knowledge and experience in growing energy crops and generally a lack of cooperation between relevant stakeholders.

There have been no issues identified with the application of the methodology as described within the BEE Methods Handbook, while recommendations regarding improvement of available data have been drawn in chapter 5.1. and essentially are related to the upgrading and harmonisation of the Basic pedological map of the Republic of Croatia.

REFERENCES - Literatura

- Bogdan, S., D. Kajba, I. Katičić, 2006: Produkcija biomase u klonskim testovima stablastih vrba na marginalnim staništima u Hrvatskoj. Glas. šum. pokuse, pos. izd. 5, 261–275.
- Bogunović, M., 1995–1997: Namjenska pedološka karta Hrvatske. Hrvatske vode, Zagreb.
- Domac, J., M. Beronja, N. Dobričević, M. Đikić, D. Grbeša, V. Jelavić, Ž. Jurić, T. Krička, S. Matić, M. Oršanić, N. Pavičić, S. Pliestić, D. Salopek, L. Staničić, F. Tomić, Ž. Tomšić, V. Vučić, 1998: Bioen Program korištenja biomase i otpada: Prethodni rezultati i buduće aktivnosti. Energetski institut "Hrvoje Požar". Zagreb. 180 str., 1998.
- Domac, J., M. Beronja, S. Fijan, B. Jelavić, V. Jelavić, N. Krajnc, D. Kajba, T. Krička, V. Krstulović, H. Petrić, I. Raguzin, S. Risović, L. Staničić, H. Šunjić, 2001:

- Bioen Program korištenja energije biomase i otpada. Nove spoznaje i provedba. 144 str., 2001.
- Domac, J., Trossero, M., 2004: WISDOM CROATIA Spatial woodfuel production and consumption analysis applying the Woodfuels Integrated Supply/Demand Overview Mapping (WISDOM) methodology, Report published by the UN Food and Agriculture Organisation within the project TCP/CRO/3101 (A) Development of a sustainable charcoal industry in Croatia; 2009.
- FAO, Unified Bioenergy Terminology (UBET), December 2004.
- Kajba, D., 1999a: Short Rotation Crops in Croatia. U: Christersson, L. & S. Ledin (ur.), Proceeding of the first meeting of IEA, Bioenergy Task 17. June 4–6 1998., Uppsala. Sweden. SLU. str. 37–40.
- Kajba, D., 1999b: Arborescent Willow Biomass Production in Short Rotations. U: Overend, R.P. &E. Chornet (ur.) Proc. of the fourth Biomass

- Conference of the Americas. August 29 September 2. Oakland. California. USA. str. 55–60.
- Kajba, D., A. Krstinić, N. Komlenović, 1998: Proizvodnja biomase stablastih vrba u kratkim ophodnjama. Šumarski list 3–4: 139–145.
- Kajba, D., S. Bogdan, I. Katičić Trupčević, 2004: Produkcija biomase bijele vrbe u klonskom testu Dravica (Šumarija Darda). Šumarski list 9–10: 509–515.
- Kajba, D., S. Bogdan, I. Katičić, 2007a: Selekcija klonova vrba za produkciju biomase u kratkim ophodnjama. Obnovljivi izvori energije u Republici Hrvatskoj (energija biomase, bioplina i biogoriva), HGK, Osijek, 27.–29. svibnja 2007., Zbornik radova: 107–113.
- Kajba, D., S. Bogdan, I. Katičić, 2007b: Produkcija biomase vrba u pokusnim kulturama kratkih ophodnji u Hrvatskoj. HAZU Zbornik radova znanstvenog skupa: Poljoprivreda i šumarstvo kao proizvođači obnovljivih izvora energije, Matić, S. (ed.): 99–105.

- Kajba, D., 2009: Contribution of Poplars and Willows to Sustainable Livelihoods and Land-use in Croatia: Status and Needs, Presentation at the International Workshop "Improve the contribution of Poplars and Willows in meeting sustainable livelihoods and land-use in selected Mediterranean and Central Asian countries" FAO Project GCP/INT/059/ITA, Izmit, Turkey, 27–31 July 2009.
- Tomić, F., T. Krička, S. Matić, 2008: Available agricultural areas and the use of forests for biofuel production in Croatia, Šumarski list 7–8: 323–330.
- Vis, M., 2011: Biomass Resource Assessment Handbook, Harmonisation of Biomass Resource Assessments, Best Practices and Methods Handbook. VDM Verlag Dr. Müller. 250 str., Saarbrücken.

SAŽETAK: Osnovni cilj projekta FP7 Biomass Energy Europe – BEE je poboljšati točnost i mogućnost usporedbe budućih procjena potencijala biomase za proizvodnju energije, uz smanjenje heterogenosti, povećanje harmoniziranosti te razmjenu znanja. Jedan od glavnih rezultata projekta je razvoj priručnika (handbook) o metodologijama za procjenu potencijala biomase, koji sadrži detaljan opis predložene metodologije u ovisnosti o vrsti biomase i tipu analize (statistički, prostorno eksplicitni, integrirani i drugi).

Glavni cilj Ilustrativnog primjera (Illustration Case) za Hrvatsku, a koji je proveden u sklopu BEE projekta, je izvršiti procjenu potencijala brzorastućih nasada na napuštenom zemljištu, odnosno zemljištu gdje poljoprivredna proizvodnja nije profitabilna. Korištena metodologija u skladu je s priručnikom razvijenim u BEE projektu. Osnovni izvor podataka sadržan je u Pedološkoj karti Hrvatske, koja je predstavljala osnovu za procjenu prikladnosti tla za bilo koju vrstu primjene.

Teoretski potencijal brzorastućih nasada u Hrvatskoj procijenjen je na sljedeće iznose:

- Površina šuma i šumskog zemljišta prikladnog za brzorastuće nasade: ukupno 51 200 ha, ukupna proizvodnja 470 200 t suhe tvari godišnje, odnosno 8,7 PJ
- Površina poljoprivrednog zemljišta sa srednje prikladnim i neprikladnim tlom ukupno 617 000 ha, ukupna proizvodnja 7 404 000 t suhe tvari godišnje, odnosno 136,2 PJ.

Tehnički potencijal brzorastućih nasada u Hrvatskoj procijenjen je na sljedeće iznose:

- Površina šuma i šumskog zemljišta prikladnog za brzorastuće nasade: ukupno 46 850 ha, ukupna proizvodnja 430 000 t suhe tvari godišnje, odnosno 7,9 PJ
- Površina poljoprivrednog zemljišta sa srednje prikladnim i neprikladnim tlom ukupno 235 650 ha, ukupna proizvodnja 2 827 800 t suhe tvari godišnje, odnosno 52,1 PJ.

Unatoč značajnom potencijalu brzorastućih nasada, trenutno se koristi vrlo mali iznos raspoložive površine. Problemi i prepreke koje je potrebno ukloniti kako bi se iskorištavanje brzorastućih nasada povećalo, uključuje promjene u cjelopnoj politici, posebice prema malim zemljoposjednicima, uvođenje financijskih poticaja, nedostatak znanja i iskustva u uzgoju brzorastućih nasada te općenito nedostatak suradnje između relevantnih dionika.

Ključne riječi: procjena potencijala biomase, Biomass Energy Europe – BEE, kulture kratkih ophodnji